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The liver is a vital organ in maintaining body physiology and 
energy homeostasis. The liver carries out a broad range of 
functions related to carbohydrate and lipid metabolism, 

detoxification, bile-acid biosynthesis and transport, cholesterol pro-
cessing, xenobiotic biotransformation and carrier-protein secretion. 
Notably, the liver performs catabolic and anabolic processing of lip-
ids and amino acids, and produces the majority of plasma proteins1. 
Liver tissue is highly structured on the cellular scale, being hetero-
geneous in both cell-type composition and microenvironment2. In 
fact, liver tissue is made up of millions of repeating anatomical and 
functional subunits, called lobules, which in mice contain hepato-
cytes arranged in about 15 concentric layers with a diameter of about 
0.5 mm (refs. 3,4). On the portal side of the lobule, blood from the 
portal vein and the hepatic arteriole enters small capillaries called 
sinusoids and flows to the central vein. This is accompanied by gra-
dients in oxygen concentration, nutrients and signalling along the 
portal–central axis, with the latter notably involving the Wnt path-
way5,6. Due to this polarization, hepatocytes in different layers per-
form separate functions. This is accompanied by gradients of gene 
expression along the portal–central axis, with some genes expressed 
more strongly near the central vein, and vice versa for portally 
expressed genes. This phenomenon is termed liver zonation1,7.

Recently, Halpern et al. combined single-cell RNA-sequencing 
(scRNA-seq) of dissociated hepatocytes and single-molecule RNA 
fluorescence in situ hybridization (smFISH) to reconstruct spa-
tial mRNA expression profiles along the portal–central axis8. This 
analysis revealed an unexpected breadth of spatial heterogene-
ity, with ~50% of genes showing spatially non-uniform patterns. 

Among them, functions related to ammonia clearance, carbohy-
drate catabolic and anabolic processes, xenobiotic detoxification, 
bile-acid and cholesterol synthesis, fatty-acid metabolism, targets 
of the Wnt and Ras pathways and hypoxia-induced genes were  
strongly zonated.

Beyond its spatial heterogeneity, liver physiology is also highly 
temporally dynamic. Chronobiology studies have shown that tem-
porally gated physiological and metabolic programmes in the liver 
result from the complex interplay among the endogenous circa-
dian liver oscillator, rhythmic systemic signals and feeding–fasting 
cycles9–11. An intact circadian clock has repeatedly been demon-
strated as key for healthy metabolism, also in humans12. In addition, 
the hepatocyte clock has specifically been shown to play a major 
role in the physiological coordination of nutritional signals and 
cell–cell communication (including non-hepatocytic cells) control-
ling rhythmic metabolism13. Temporal compartmentalization can 
prevent two opposite and incompatible processes from simultane-
ously occurring: for example, glucose is stored as glycogen follow-
ing a meal and is later released into the blood circulation during 
the fasting period to maintain homeostasis in plasma glucose levels. 
Functional genomics studies of the circadian liver have typically 
been performed on bulk liver tissue14. In particular, several studies 
have shown how both the circadian clock and the feeding–fasting 
cycles pervasively drive rhythms of gene expression in bulk, impact-
ing key sectors of liver physiology such as glucose homeostasis and 
lipid and steroid metabolism15–18.

Here, we asked how these spatial and temporal regulatory pro-
grammes interact on the levels of individual genes and liver functions 
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more generally. In particular, can zonated gene expression patterns 
be temporally modulated on a 24-h time scale? And conversely, 
can rhythmic gene expression patterns observed in bulk samples 
exhibit sub-lobular structure? More complex situations may also 
be envisaged, such as time-dependent zonation patterns of mRNA 
expression (or, equivalently, zone-dependent rhythmic patterns), 
or sub-lobular oscillations that would escape detection on the bulk 
level due to cancelations. On the physiological level, it is of inter-
est to establish how hepatic functions might be compartmentalized 
both in space and time. To study both the spatial and temporal axes, 
we performed scRNA-seq of hepatocytes at 4 different times in the 
24-h day, extending a previous approach8,19 to reconstruct spatial 
profiles at each time point. The resulting space-time patterns were 
statistically classified using a mixed-effect model describing both 
spatial and temporal variations in mRNA levels. In total, ~5,000 
liver genes were classified on the basis of their spatio-temporal 
expression profiles, and a few representative profiles were further 
analysed with smFISH. Overall, this approach revealed the richness 
of space-time gene expression dynamics of the liver and provides a 
comprehensive view on how spatio-temporal compartmentalization 
is utilized at the sub-lobular scale in the mammalian liver.

Results
Single-cell RNA-seq captures space-time gene expression pat-
terns in mouse liver. To investigate spatio-temporal gene expres-
sion patterns in mouse liver, we sequenced mRNA from individual 
liver cells obtained via perfusion from 10 ad libitum fed mice at 4 
different times of the day (zeitgeber time (ZT) = 0 h, 6 h, 12 h and 
18 h, 2–3 replicates per time point). The interval between ZT0 and 
ZT12 had the light on and corresponded to the fasting period in 
mice, while feeding happened predominantly between ZT12 and 
ZT0. We focused on hepatocytes by enrichment of cells according to 
size and in silico filtering, yielding a total of 19,663 cells (Methods). 
To validate that the obtained scRNA-seq data captured the expected 
variability in both spatial and temporal mRNA levels, we generated 
a clustering analysis of all cells by using a standard two-dimensional 
t-distributed stochastic neighbour embedding (t-SNE) dimension-
ality reduction (Methods) and coloured cells either by their positions 
along the central–portal axis (the a posteriori-assigned layers, see 
below) (Fig. 1a) or time (Fig. 1b). The clustering revealed that por-
tally and centrally expressed landmark transcripts, such as Cyp2f2 
and Cyp2e1, encoding cytochrome P450 oxygenases involved in 
xenobiotic metabolism, marked cells in opposite regions of the pro-
jections (Fig. 1c,d). Likewise, time-of-day gene expression varied 
along an orthogonal direction (Fig. 1b), as shown for the fatty-acid 
elongase gene Elovl3 peaking at ZT0 (Fig. 1e).

To obtain spatial mRNA expression profiles for each gene along 
the central–portal axis, we here introduced eight lobule layers, to 
which we assigned each individual cell. For this, we adapted a previ-
ous method that uses expression levels of landmark zonated genes 
to define a central–portal coordinate19, with the modification that 
only landmark transcripts that were sufficiently expressed and that 
did not vary across mice and time points were used (27 central and 
28 portal landmark genes, Methods). The resulting reconstructed 
(binned) mRNA expression profiles yielded 80 (8 layers over 10 

mice) data points for each transcript. Although our resolution is 
lower compared with the typical 12–15 hepatocyte layers found in 
the liver3,4, these reconstructions faithfully captured reference zon-
ated genes, with both central, and portal, expression (Fig. 1f). Two 
examples of such genes are the centrally expressed glutamine syn-
thethase (Glul), and the portally expressed urea cycle gene arginino-
succinate synthetase (Ass1), showing mutually exclusive expression 
along the lobule8. The reconstruction also successfully identified 
transcripts of the core circadian clock, such as the master transcrip-
tion factor gene Bmal1 (also named Arntl), whose mRNA peaked 
between ZT18 and ZT0 (Fig. 1g)20. In addition to core clock genes, 
important clock outputs such as the PAR bZip transcription fac-
tor gene Dbp, which is a direct transcriptional target of BMAL1 
regulating detoxification enzymes, peaked between ZT6 and ZT12  
(Fig. 1g)21. Finally, genes showing both zonated and rhythmic 
mRNA accumulation were found (Fig. 1h), for example elonga-
tion of very long chain fatty acids 3 (Elovl3) is centrally expressed 
and peaks near ZT0, while phosphoenolpyruvate carboxykinase 1  
(Pck1) regulating gluconeogenesis during fasting is expressed  
portally and peaks shortly before ZT12. Since most of the zonated 
profiles showed exponential shapes, and gene expression changes 
typically occur on a log scale22, we log-transformed the data for 
further analysis (Methods, Fig. 1f and Extended Data Fig. 2a–c). 
Together, these examples indicate that the obtained gene expression 
profiles reliably capture spatial and temporal regulation of hepato-
cyte gene expression.

mRNA expression profiles categorized according to zonation and 
rhythmicity. To gain a systematic understanding of the space-time 
gene expression profiles, we next investigated if zonated gene 
expression patterns could be dynamic along the day, or conversely 
whether temporal expression patterns might be zone-dependent. To 
select a reliable set of reconstructed mRNA expression profiles for 
subsequent analyses, we filtered out genes with low expression, as 
well as genes with substantial biological variability across replicate 
liver samples, although this may be at the expense of a potentially 
decreased sensitivity (Methods). This yielded 5,058 spatio-temporal 
gene expression profiles (Extended Data Fig. 2d). An exploratory 
analysis of variance clearly identified zonated genes, rhythmic genes 
and fewer genes showing variability along both axes, with known 
zonated and rhythmic genes distributed as expected (Fig. 2a).

To identify possible dependencies between spatial and temporal 
variations, we built a mixed-effect linear model23 for the space-time 
mRNA profiles, which extends harmonic regression to include a 
spatial covariate (Fig. 2b). In this model, rhythms are parameterized 
with cosine and sine functions, while spatial profiles are represented 
with (up to second-order) polynomials. In its most complex form, 
the model uses nine parameters describing spatially modulated 
oscillations, and one intercept per mouse (Methods). When some of 
the parameters are zero, the model reduces to simpler mRNA pro-
files, for example purely spatial or purely temporal expression pro-
files (Fig. 2c). We then used model selection24 to identify the optimal 
parameterization and category for each gene (Methods). Finally, 
we classified each mRNA profile into one of five types of pattern 
(Fig. 2c). If only the intercept is used, the profile will be classified 

Fig. 1 | An scRNA-seq approach to space-time gene expression in mouse liver. a–e, Global gene expression varies in both space and time, as shown 
using t-SNE visualizations of the scRNA-seq (n = 19,663 hepatocytes examined over 10 independent animals). Each dot represents one cell. Individual 
cells are coloured by the (a posteriori-assigned) lobule layer (a), ZT (b), expression levels of the zonated genes Cyp2f2 and Cyp2e1 (c,d) or the temporally 
regulated and centrally zonated gene Elovl3 (e). f–h, Reconstructed spatial profiles (lobule layers 1–8) of selected zonated genes (f, top: Glul pericentrally 
(PC) expressed, bottom: Ass1 periportally (PP) expressed); rhythmic but non-zonated genes (g, top: core clock gene Bmal1 peaking at ZT18–ZT0, bottom: 
clock-controlled Dbp, peaking at ZT6–ZT12); zonated and rhythmic genes (h, top: Elovl3, bottom: Pck1). Expression levels correspond to fraction of total UMI 
per cell in linear scale. Log-transformed profiles are in Extended Data Fig. 1. Dots in f–h represent data points from the individual mice. Lines represent  
the mean expression per time point. Shaded areas represent one s.d. across the mice. For the scRNA-seq, we used n = 2 (ZT6, ZT18) or n = 3 mice  
(ZT0, ZT12) (Methods).
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as flat or noisy (F/N, Methods). If only time-independent zona-
tion parameters are retained, the predicted profile will be purely 
zonated (Z). If only layer-independent rhythmic parameters are 

retained, the predicted profile will be purely rhythmic (R). If only 
layer-independent rhythmic parameters and time-independent 
zonation parameters are retained, the profile is classified as  
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independent rhythmic-zonated (Z + R). If at least one 
layer-dependent rhythmic parameter is selected, the profile will be 
termed interacting (Z × R). This classification revealed that, over-
all, about 30% of the mRNA profiles were zonated (Z, Z + R and 
Z × R), and about 20% were rhythmic (R, Z + R and Z × R) (Fig. 2d). 
The peak times of these rhythmic transcripts were highly consis-
tent with bulk chronobiology data25 (Extended Data Fig. 2e). The 
entire analysis can be browsed as a web-app resource along with the  
corresponding data (https://czviz.epfl.ch).

Interestingly, we found that 7% of the analysed genes in the liver 
were both zonated and rhythmic. Such dually regulated transcripts 
represent 25% of all zonated transcripts, and 36% of all rhythmic 
transcripts, respectively. For example, the previously shown Elovl3 
transcript, encoding a protein involved in fatty-acid elongation, 
and Pck1, encoding a rate-limiting enzyme in gluconeogenesis, 
are prototypical Z + R genes (Fig. 1h and Extended Data Fig. 2c). 
Gluconeogenesis is an energetically demanding task3. As mice are in 
a metabolically fasted state requiring glucose production towards the 
end of the light phase (~ZT10) and oxygen needed for ATP produc-
tion is most abundant portally26, this process is indeed both spatially 
and temporally regulated. The dual regulation of zonated-rhythmic 
genes may therefore ensure optimal liver function under switching 
metabolic conditions.

Dually regulated genes were mostly Z + R, with only a minority 
of Z × R patterns. The average expression across categories showed 
that rhythmic genes are significantly less expressed on average than 
are genes in zonated categories, probably reflecting their shorter 
half-lives (Fig. 2e and Extended Data Fig. 2f). Surprisingly, we 
found few highly expressed flat genes. Together, our results show 
that mRNA expression of many zonated genes in hepatocytes is not 
static, and is in fact compartmentalized both in space and time.

Properties of dually zonated and rhythmic mRNA profiles. The 
majority of dually regulated genes are Z + R, which denotes addi-
tive (in log) space-time effects, or dynamic patterns in which slopes 
or shapes of spatial patterns do not change with time (Fig. 2c). On 
the other hand, interacting patterns (Z × R) are rare. Comparison of 
the proportions of central, mid-lobular (peaking in the middle of 
the portal–central axis) and portal genes among the purely zonated 
genes (Z), and independently zonated and rhythmic genes (Z + R), 
did not reveal significant differences (Fig. 3a), suggesting that 
rhythmicity is uncoupled with the direction of zonation. Similarly, 
comparing the phase distribution among the purely rhythmic 
genes (R) and the Z + R genes did not show a significant differ-
ence (Fig. 3b), indicating that zonation does not bias peak expres-
sion time. Moreover, oscillatory amplitudes were uncorrelated with 
the zonation slopes in Z + R genes (Fig. 3c). Finally, for Z × R genes 
with potentially more complex space-time patterns, we investi-
gated the spreads in amplitudes and peak times across the layers  
(Fig. 3d). For wave-like patterns (phase modulated profiles), the phase  
difference across the lobule was up to 3 h, which corresponds to a 

difference in time between neighbouring hepatocytes on the order 
of 10 min for lobules of about 15 cell layers. On the other hand, 
amplitude-modulated patterns showed up to a twofold difference in 
oscillatory amplitude across the lobule.

To assess the potential physiological role of dually zonated 
and rhythmic transcripts, we asked if protein levels of the identi-
fied Z + R and Z × R genes accumulated rhythmically in a previous 
proteomics experiment27. In general, proteins rhythms are fewer, 
damped and time-delayed compared with mRNA rhythms due to 
protein half-lives14,27,28 (see ‘Discussion’). However, while R tran-
scripts were twice more frequent than were Z + R transcripts, the 
proportions were inverted for rhythmic proteins. Indeed, we found 
that among 65 rhythmic proteins (with q < 0.2 in ref. 27), 18 cor-
responded to Z + R and 10 to R transcripts. Moreover, the identi-
fied Z + R and Z × R genes with rhythmic protein accumulation 
cover key hepatic and zonated functions (Extended Data Fig. 3, for 
a functional interpretation, see below) and include rate-limiting 
enzymes. For example, for Z + R transcripts (Extended Data  
Fig. 3a), PCK1 (rate-limiting for gluconeogenesis), LPIN2 (Lipin2, 
encoding an enzyme that catalyses the conversion of phosphatidic 
acid to diacylglycerol during triglyceride, phosphatidylcholine and 
phosphatidylethanolamine biosynthesis), POR (cytochrome P450 
oxidoreductase, required to activate P450 enzymes), DNAJA1 
(HSP40 co-chaperone), ALAS1 (rate-limiting for haem biosyn-
thesis), GNE (rate-limiting in the sialic acid biosynthetic pathway) 
and THRSP (biosynthesis of triglycerides from medium-length 
fatty-acid chains), show robust rhythms at the protein level. 
Similarly, for Z × R proteins, CYP7A1 (rate-limiting enzyme in 
bile-acid synthesis), CYP2A5 (coumarin 7-hydroxylase), SLC1A2 
(high-affinity glutamate transporter) and multidrug-resistance 
protein ABCC2 show rhythms on the protein level (Extended Data  
Fig. 3b). Moreover, the protein rhythms accompanying those Z + R 
and Z × R transcripts peak with an expected delay of maximally 
about 6 h (ref. 28) compared with the mRNA peak times (Extended 
Data Fig. 3c).

smFISH analysis of space-time mRNA counts. To substanti-
ate the RNA-seq profiles, we performed smFISH experiments 
on a set of selected candidate genes with diverse spatio-temporal 
patterns. smFISH provides a sensitive and independent, albeit 
low-throughput, measurement of mRNA expression. Purely zon-
ated genes (Z) have already been well studied with smFISH8. To 
analyse the core clock, we measured two genes peaking at different 
times, Bmal1 and Per1, which were classified as R in the RNA-seq 
analysis. Bmal1 (~ZT0) and Per1 (~ZT12) phases were nearly 
identical in both experiments, and the rhythms did not depend 
on the lobular position consistent with R genes (Fig. 4a). We anal-
ysed three genes classified as Z + R: Pck1 was indeed both portally 
biased and rhythmic in RNA-seq and smFISH (Fig. 4b); Elovl3 was 
both centrally biased and rhythmic in RNA-seq and smFISH, even 
though the amplitude of the oscillations was damped on the portal 

Fig. 2 | Space-time mRNA expression profiles categorized with mixed-effect models. a, Spatial and temporal variations for mRNA transcript profiles, 
calculated as s.d. of log2 expression along spatial or temporal dimensions. Coloured dots correspond to reference zonated genes (orange) and reference 
rhythmic genes (blue) (Methods). b, Extended harmonic regression model for spatio-temporal expression profiles describing a static but zonated 
layer-dependent mean μ(x), as well as layer-dependent harmonic coefficients (a(x) and b(x)). All layer-dependent coefficients are modelled as second 
order polynomials; y is the log-transformed gene expression, x denotes the layer index, t denotes time, and i denotes the biological replicates. Temporal 
dependency is modelled with 24-h periodic harmonic functions. μi are random effects needed due to the data structure hierarchy (Methods). c, Schema 
illustrating the different categories of profiles. Depending on which coefficients are non-zero (Methods), genes are assigned to: F/N (not represented), Z, 
R, Z + R or Z × R. Graphs emphasize either zonation (top), with the x axis representing layers, or rhythmicity (bottom), with the x axis representing time 
(ZT). Right side of the panel: two examples of fits (Elovl3 and Cyp7a1, respectively Z + R and Z × R). d, Number of transcripts in each category. e, Boxplot 
of the mean expression per category shows that zonated genes (Z, Z + R and Z × R) are more expressed than rhythmic (R) or flat/noisy (F/N). Z × R genes 
are the most expressed according to median expression (orange line). Box limits are lower and upper quartile, whiskers extend up to the first datum 
greater/lower than the upper/lower quartile plus 1.5 times the interquartile range. The number of genes per category is indicated. The remaining points are 
outliers. KW, Kruskal–Wallis test; MW for the Mann–Whitney (two-sided) test.
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side in the FISH experiment (Extended Data Fig. 4a); and for Arg1 
(Arginase 1), the portal RNA-seq and smFISH profiles matched well 
(Extended Data Fig. 4b). Finally, Acly showed a pattern in smFISH 
data that validates its classification as Z × R, with a lower amplitude 
on the portal side, where the transcript is more highly expressed 
(Fig. 4c). Thus, overall, the reconstructed scRNA-seq and smFISH 
profiles were consistent, with minor discrepancies.

Space-time logic of hepatic functions. We next used our classifica-
tion to explore the spatio-temporal dynamics of hepatic functions 
and signalling pathways in the liver. Given the prevalence of zonated 
gene expression profiles, we first analysed whether the circadian 
clock is sensitive to zonation. We found that profiles of reference core 
clock genes (Extended Data Fig. 5) were assigned to the rhythmic 
only category (R), except for Cry1 and Clock, which were assigned 
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to Z + R, but with high probabilities also for R (Supplementary  
Table 2). This suggests that the circadian clock is largely non-zonated, 
as seen in the smFISH (Fig. 4a), and is therefore robust to the  
heterogenous hepatic microenvironment.

We then systematically explored enrichment of biological func-
tions in the zonated category by querying the KEGG pathways data-
base (Supplementary Table 3, Fig. 5 and Methods). In addition to 
recapitulating well-documented zonated liver functions8,29, which 
we do not discuss here, this analysis highlighted Z and Z + R func-
tions that, to our knowledge, had not been linked with liver zona-
tion. For instance, we found that cytosolic chaperones accumulate 
centrally, while the endoplasmic reticulum (ER) chaperones linked 
with protein secretion accumulate portally (Fig. 5b,d and Extended 
Data Fig. 6). Both groups of chaperones peak during the activity/
feeding phase, probably due to body temperature rhythms peaking 
during the active phase30,31, and likely reflect increased needs of pro-
tein folding during times of high protein synthesis. Also, we found 

that mRNAs of ribosomal protein genes accumulate centrally (Z), as 
do proteasome components (Fig. 5a), which also contain rhythmic 
members (Z + R). In the liver, ribosomal proteins are rate-limiting 
for the synthesis of ribosomes, which themselves are rate-limiting 
for the synthesis of proteins32. Therefore, the overall protein syn-
thesis rate is probably higher in these hepatocytes. Conversely, 
transcripts encoding components of the proteasome are involved  
in protein degradation. Together, these observations suggest that 
protein turnover is higher in centrally located hepatocytes, which 
are exposed to an environment with high concentrations of xeno
biotics and hypoxic stress33.

In addition, while many mitophagy genes are expressed cen-
trally (Z), some of those also show robust temporal rhythms 
peaking during the fasting period (Z + R), in particular two 
gamma-aminobutyric acid receptor-associated proteins (encoded 
by Gabarap and Gabarapl1) with an important function in 
autophagosome-mediated autophagy34. Consistently with this 
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temporal regulation, we had previously reported that the nuclear 
abundance of the fasting-dependent regulators of autophagy TFEB 
and ZKSCAN3 peaked near ZT6 (ref. 35). Moreover, the centrally 
and synchronously accumulating ubiquitin B mRNA (Ubb, Z + R) 
may contribute to triggering mitophagy36. Thus, centrally biased 
mitophagy may participate in removal of damaged mitochondria in 
the stressed central environment.

Similarly, genes involved in bile-acid synthesis and bile secre-
tion are known to show zonated expression patterns8 (Fig. 5c). 
Here, we found that while the rate-limiting enzyme in the bile-acid 

biosynthetic pathway, Cyp7a1 (Z × R, Fig. 2c), is known to be 
clock-controlled, with its mRNA37,38 and protein39 (Extended Data 
Fig. 7d) expressed maximally early during the feeding period, the 
ABC transporters sterolin-1 and 2 (ABCG5/ABCG8, both identi-
fied as Z + R), which excrete most of the biliary cholesterol40, peak 
towards the end of the fasting period near ZT9.

Many detoxification enzymes of the cytochromes P450 (CYPs) 
superfamily are known to be centrally zonated in the liver8, and 
several of those are found in the Z + R category. In particular, the 
flavin-containing monooxygenases FMO1, FMO2 and FMO5, 
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which are NADPH-dependent monooxygenases involved in drug 
and xenobiotic detoxification, exhibit Z + R mRNA patterns with 
peak near ZT16 (Fig. 5c). Also, the FMO5 protein accumulates  

rhythmically (Fig. 3c and Extended Data Fig. 3). Moreover, the 
rate-limiting enzyme ALAS1 that produces the P450 cofactor 
haem was found as a centrally zonated Z + R transcript with peak 

Term Adj. P % central

Cholesterol metabolism 5.58 × 10–11 54

Glycerophospholipid metabolism 1.61 × 10–3 55

Steroid biosynthesis
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3.15 × 10–3 60

4.37 × 10–7 78
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Steroid hormone biosynthesis
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Fatty-acid elongation
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1.92 × 10–10 82

PPAR signalling pathway 6.87 × 10–9 84

Arachidonic acid metabolism 6.31 × 10–5 90

Peroxisome 2.24 × 10–13 90

Butanoate metabolism 1.14 × 10–4 90

Linoleic acid metabolism 5.49 × 10–6 93

2.62 × 10–5 93
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Protein processing in endolasmic reticulum
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Phenylalanine metabolism 1.10 × 10–3 25

Glycine, serine and threonine metabolism 8.35 × 10–4 27

Cysteine and methionine metabolism 2.75 × 10–5 40

Tryptophan metabolism 9.63 × 10–8 50

β-Alanine metabolism 2.38 × 10–3 66

2.24 × 10–7 89

1.41 × 10–5 35

Ribosome 1.41 × 10–9 100

Proteasome 1.67 × 10–4 100

Pyruvate metabolism

Oxidative phosphorylation

Synthesis and degradation of ketone of ketone bodies

5.26 × 10–4 45
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Chemical carcinogenesis
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Ferroptosis 4.11 × 10–5 30

4.76 × 10–16 8

a b

d

c

A
m

in
o 

ac
id

s
Li

pi
ds

E
ne

rg
y

Protein

homeostasis

Heme

Carbohydrates

Vitamin

Lysosome

Bile

Iron

Complements

Autophagy

Insulin

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

0.2
0.4

0.6
0.8

Dnajb11

Dnajc3

Hsp90b1Hspa5
Pdia3

Atp1a1

Slc2a2

Slc37a4

Fasn

Pck1

Zp + R

Lipids
Amino acids
Protein homeostasis

Autophagy
Vitamin
Heme
Bile
Detoxification

Carbohydrates
Insulin

Energy
0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Eci2

Phyh

Elovl3

Acox1

Acsl1

Abcg8

Ehhadh

Cdo1
Dnaja1

Hsp90aa1

Pnp

Baat

Zc + R (1)

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

Baat

Abcg8

Bnip3

Gabarapl1

Gch1

Alas1

Abcc2
Fmo5

Gsta3

Ugt2b35

Zc + R (2)

0.1

Fig. 5 | Space-time logic of compartmentalized hepatic functions for Z + R genes. a, KEGG analysis of the Z and Z + R genes. For clarity, only KEGG 
pathways (second column) with adjusted P < 0.01 (standard Enrichr67 output test) are presented (Supplementary Table 3 for all enriched functions). 
The percentage of central genes is represented by a blue–red gradient. Terms labelled with asterisks appear central due to the KEGG annotation system; 
however, fatty-acid elongation is biased portally (see text). b–d, KEGG analysis of Z + R genes. Representations of genes in central (b,c) and portal (d) 
enriched Z + R categories (Supplementary Table 3). Polar representation, peak expression times are arranged clockwise (ZT0 on vertical position), and 
amplitudes (log2, values indicated on the radial axes) increase radially. The radius coordinate of genes with an amplitude of >0.9 is halved (indicated with 
a black circle around the coloured dot).

Nature Metabolism | www.nature.com/natmetab

http://www.nature.com/natmetab


ArticlesNATURE METAbOLISm

mRNA at ZT13, also showing a robust rhythm in protein expression 
(Extended Data Fig. 3).

To substantiate the above finding on heat shock genes, we 
examined the space-time behaviour of temperature-regulated 
genes. To this end, we considered targets (bound in chromatin 
immunoprecipitation followed by sequencing) of the heat shock 
transcription factor HSF1 (Chip-Atlas41, includes our own liver 
data16). This showed that several targets, known to peak during the 
active phase30,31, are also zonated (Extended Data Fig. 6). Notably, 
the cytoplasmic Hsp90aa1 (encoding Hsp90A chaperone) and its 
interactor Dnaja1 (encoding HSP40), as well as the mitochondrial 
Hspd1 (encoding HSP60 chaperone), are expressed centrally, where 
protein turnover is high. In contrast, genes encoding ER-located 
chaperones, including Hspb1 (encoding Hsp90B) and its interactor 
Pdia3, as well as Hspa5 (encoding HSP70) and Dnajc3 and Dnajb11 
(encoding ER-resident DNAJ/HSP40), are expressed portally, con-
sistent with their role in folding proteins in the secretory pathway 
(secretion is known to occur portally29). On the other hand, the 
analysis of cold-induced genes (that is, CIRBP and analogues, taken 
from ref. 42) did not show zonated gene expression.

Finally, we note that among all KEGG pathways related  
to lipids, a majority show central enrichment (Fig. 5a and 
Supplementary Table 3). Inspection of the genes involved shows 
that this is due to the large number of genes related to peroxi-
somal β-oxidation, that is lipid catabolism, which are incidentally  
also listed in biosynthesis KEGG pathways (Supplementary 
Table 3). However, fatty-acid synthesis is biased portally, as sup-
ported by key portally expressed genes, such as Fasn, Srebf1, Acly, 
Acaca, Elovl2 and Elovl5; this also is consistent with the fact that 
oxygen needed for mitochondrial β-oxidation is most abundant 
portally26. On the other hand, Elovl3, which is known to be tran-
scriptionally controlled by the peroxisome regulator PPARα and 
atypically regulated among ELOV-family fatty-acid elongases43 is  
expressed centrally.

Space-time logic of activity of signalling pathways. Signalling 
pathways that include Wnt, Ras and hypoxia have been shown to 
shape hepatocyte zonation8. We therefore examined the space-time 
activities of these pathways, extracted from the behaviour of canon-
ical target genes. We mainly focused on Wnt, as it is often con-
sidered the master regulator of liver zonation44. To systematically 
investigate spatio-temporal WNT–β-Catenin activity in the liver, 
we extracted a set of Wnt targets derived from an adenomatous 
polyposis coli gene knockout (APC-KO) mouse liver8,45. We found 
that rhythmic transcripts (in the R, Z + R and Z × R categories) are 
enriched among targets of the Wnt pathway, showing a proportion 
that increases with the strength of the targets, with the strongest 
Wnt targets containing 80% of rhythmic transcripts (Extended Data 
Fig. 7a). Positive Wnt targets were pericentral8 and peaked between 
ZT9 and ZT12, whereas negative Wnt targets were periportal8 and 
peaked between ZT21 and ZT3 (Fig. 6a).

To obtain a temporal view of Wnt activity, we consid-
ered the top 50 Wnt pathway targets (according to the liver 
APC-KO data) in the liver and analysed the temporal profiles 
from high-temporal-resolution bulk liver mRNA and from our 
scRNA-seq binned in three different zones: central (layers 1–2), 
mid-lobular (layers 3–5) and portal (layers 6–8) (Fig. 6b,d and 
Extended Data Fig. 7b,c). This analysis confirmed that the peak 
times of rhythmic Wnt targets are preferentially between ZT9 and 
ZT12, and that the bulk and single-cell data are consistent with each 
other, despite of the lower temporal sampling of the scRNA-seq. 
Further evidence of rhythmic Wnt–β-catenin activity was provided 
by our previous proteomics data35 showing that the potent Wnt 
effector TCF4 (encoded by the Tcf7l2 gene) has rhythmic nuclear 
abundance in mouse liver, with a peak phase at ZT7.5 (Fig. 6c), and 
hence explains the accumulation of its mRNA targets a few hours 

later. Among the rhythmic genes detected in bulk RNA-seq, the 
five strongest Wnt targets were, in decreasing order: Axin2, Glul, 
Slc1a2, Tuba8 and Rnf43, with the latter showing the largest ampli-
tude (Fig. 6d). Aall but Tuba8 peaked in the morning. Note that 
Glul, an important marker of central zonation and a canonical Wnt 
target (just like Axin2 and Rnf43), was assigned to the Z category, 
but with second highest probability for Z × R (Supplementary  
Table 2), peaking at ZT12.

In addition to the mRNA rhythms, we found that several of 
the Z + R or Z × R Wnt targets showed clear rhythms in bulk  
proteomics with the characteristic phase delays. The strongest five 
targets with rhythmic proteins (Extended Data Fig. 7d) included 
the rate-limiting enzyme in the bile-acid biosynthetic pathway 
CYP7A1, the NADPH-dependent monooxygenases involved in 
drug and xenobiotic detoxification FMO5, the P450 detoxification 
enzymes coumarin 7-hydroxylase (encoded by Cyp2a5), which 
may protect mice from dietary coumarin-induced toxicity46, the 
high-affinity glutamate transporter Slc1a2 (encoded by Eaat2) and 
the multidrug-resistance protein ABCC2. All these proteins showed 
high-amplitude protein rhythms peaking during the feeding phase 
between ZT12 and ZT18. Thus, Wnt transcription activity is  
clearly rhythmic in the liver, and this rhythm can propagate to  
protein expression.

We next asked whether the temporal oscillations in the expression 
of Wnt-activated genes might correlate with temporal oscillations in 
Wnt morphogens produced by pericentral non-parenchymal liver 
cells. To this end, we performed smFISH experiments and quan-
tified the expression of the Wnt ligand gene Wnt2 (ref. 5) and of 
Rspo3 (refs. 6,47), a critical facilitator of Wnt signalling, as well as 
the Wnt antagonist gene Dkk3 (ref. 19) (Fig. 7a,b). We found that 
both Wnt2 and Rspo3 in liver non-parenchymal cells (NPCs) 
exhibit non-uniform expression around the clock, with significantly 
higher mRNA levels at ZT0 (P = 4 × 10−5 for Wnt2, and P = 2 × 10−8 
for Rspo3, Kruskal–Wallis, Fig. 7b). Given various delays between 
mRNA accumulation of ligands and expression of the Wnt targets, 
this timing is compatible with the peak nuclear accumulation of the 
TCF4 (encoded by Tcf7l2) transcription factor observed at ZT7.5 
(Fig. 6c) and with the peaks in Wnt-activated genes between ZT6 
and ZT12 (Fig. 6a,b). Differences in Dkk3 expression were not 
significant (P = 0.053). Thus, production of Wnt morphogens by 
central non-parenchymal liver cells might underlie the observed 
rhythmic Wnt pathway activity.

Ras signalling and hypoxia are two additional pathways that have 
been implicated in shaping hepatocyte zonation8. In agreement with 
ref. 8, we found that the negative targets of Ras were enriched in 
central genes, whereas the positive Ras targets were enriched in por-
tal genes (data not shown). The rhythmic targets (R and Z + R) of 
hypoxia showed a pattern of temporal compartmentalization simi-
lar to those of Wnt (Extended Data Fig. 7e): the negative targets were 
enriched around ZT0 (dark–light transition) and underrepresented 
around ZT14, while the positive targets were enriched around ZT10 
and underrepresented around ZT3. Ras targets, positive or negative, 
did not exhibit temporal bias.

Discussion
Recent genome-wide analyses of zonated gene expression in mouse 
and human liver8,48,49 uncovered a rich organization of liver func-
tions in space at the sub-lobular scale, while chronobiology studies 
of bulk liver tissue revealed a complex landscape of rhythmic regu-
latory layers orchestrated by a circadian clock interacting with feed-
ing–fasting cycles and systemic signals35,50–52. Here, we established 
how these two regulatory programmes combine to shape the daily 
space-time dynamics of gene expression patterns and physiology 
in adult liver by extending our previous scRNA-seq approach8. We 
found that the liver uses gene expression programmes with many 
genes that exhibit compartmentalization in both space and time.
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Fig. 6 | Rhythmic activity of Wnt signalling. a, Enrichment/depletion at different times (window size: 3 h), of both positive (n = 471) and negative (n = 149) 
Wnt targets (background: all R and Z + R genes). The colour map shows P values (two-tailed hypergeometric test): red indicates enrichment, and blue 
indicates depletion. b, Heatmaps representing scRNA-seq profiles of the top 50 Wnt targets (according to the APC-KO fold change, Lgr5 was also added) 
showing rhythmic mRNA in bulk (P < 0.01, harmonic regression, F test, data from ref. 25). The profiles are computed in three different zones of the central–
portal axis: central (layers 1–2), mid-lobular (layers 3–5) and portal (layers 6–8). Gene profiles (log2) are mean-centred in each zone. An enrichment of 
the phases around ZT8–ZT14 can be observed, in agreement with Fig. 6a. mRNA expression profiles of the genes in bold are shown in d. c, Nuclear protein 
abundance from ref. 35 of the Wnt effector TCF4 (encoded by the Tcf7l2 gene) in mouse liver shows a rhythm (p = 0.003, harmonic regression, n = 2, sampled 
every 3 h) peaking at ZT7.5, consistent with the accumulation of mRNA targets a few hours later (a). d, mRNA profiles from bulk RNA-seq (top) and 
scRNA-seq (bottom). Top five targets with the highest APC-KO fold change, and rhythmicity in the bulk data (P < 0.01, harmonic regression, F test, data from 
ref. 25). Rhythmicity (indicated above each panel) is also computed in three different zones for the scRNA-seq data. As above, the scRNA-seq used  
n = 2 (ZT6, ZT18) or n = 3 mice (ZT0, ZT12).
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In this study, we chose to focus on the parenchymal cells in the 
liver, the hepatocytes, for which smFISH data on landmark zon-
ated genes were readily available, which enabled reconstruction 
of spatio-temporal mRNA profiles from scRNA-seq8. Zonation 
profiles of other cell types in the liver may be obtained as well; in 
fact, static zonation mRNA expression profiles have been obtained 
for liver endothelial cells, using a paired-cell approach19 in which 
mRNA from pairs of attached mouse cells were sequenced, and gene 
expression from one cell type was used to infer the pairs’ tissue coor-
dinates. In addition, ab initio reconstruction methods such as diffu-
sion pseudo time48 or novoSpaRc53, in which a zonation coordinate 
is inferred by assuming that the major axis of variability for a cell 
type reflects transcriptome-wide gene expression changes associ-
ated with zonation, could be used for spatially sparse cell types with 
no available zonated marker genes, for example stellate or resident 
immune Kupffer cells. Moreover, it has recently been found that 
rhythmic gene expression and metabolism in non-hepatocyte cells 

can be driven both by clocks in hepatocytes via cell–cell commu-
nication as well as feeding cycles13. Our computational framework 
for analysing space-time logic of gene expression could be widely 
applicable in such future studies.

To study whether the observed space-time expression  
profiles might be regulated by either liver zonation, 24-h rhythms 
in liver physiology, or both, we developed a mixed-effect model, 
combined with model selection. This enabled classification of 
gene profiles into five categories representing different modes of 
spatio-temporal regulation, from flat to wave-like. To validate these, 
we performed smFISH in intact liver tissue, which showed largely 
compatible profiles, although some quantitative differences were 
observed. These differences most likely reflect the lower sensitiv-
ity of RNA-seq, uncertainties in the spatial analysis of smFISH in 
tissues, as well as known interanimal variability in the physiologic 
states of individual livers, notably related to the animal-specific 
feeding patterns25.
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Fig. 7 | Wnt targets could be explained by rhythmically expressed Wnt ligands from NPCs. a, Representative smFISH images of Wnt2, Dkk3 and Rspo3 
expression at ZT0 (left) and ZT18 (right), shown in green. Markers of NPCs are shown in red (Methods). Nuclei are stained in blue (DAPI). Scale bars, 
2 µm. b, Violin plots representing quantitative analysis of smFISH images (n = 1,420 cells from 189 central veins of at least 2 mice per time point). Wnt2, 
Dkk3 and Rspo3 transcripts are quantified in NPCs lining the central vein (Methods). mRNA expression is in smFISH dots per µm3. P values are obtained 
from Kruskal–Wallis test.
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Together, this temporal analysis confirms that a large proportion 
of gene expression in hepatocytes is zonated8 or rhythmic17, and 
in addition reveals marked spatio-temporal regulation of mRNA 
levels in mouse liver (Z + R and Z × R genes, comprising 7% of all 
detected genes according to our criteria). This means that zonated 
gene expression patterns can be temporally modulated on a circa-
dian scale, or equivalently, that rhythmic gene expression profiles 
can exhibit sub-lobular structure. The dominant pattern for dually 
regulated gene was Z + R, which corresponds to additive effects 
of space and time in log, or multiplicate effects of gene expression 
levels, and describes genes expression profiles that are compart-
mentalized in both space and time. In other words, such patterns 
are characterized by shapes (in space) that remain invariant with 
time, but whose magnitudes are rhythmically rescaled in time. Or 
equivalently, the oscillatory amplitude (fold change) and phases are 
constant along the lobular coordinate, but the mean expression is 
patterned along the lobule. Such multiplicative effects could reflect 
the combined actions of transcriptional regulators for the zone and 
rhythm on promoters and enhancers of Z + R genes. Indeed, gene 
expression changes induced by several regulators combine multi-
plicatively22. Note that though the (relative) shape of Z + R patterns 
is invariant in time, threshold-dependent responses that would lie 
downstream of such genes would then acquire domain boundaries 
which can shift in time. Similar phenomena are expected for inter-
acting profiles (phase and amplitude modulated) (Z × R) that we 
observed for a smaller number of genes.

As has been shown by us and others27,28, rhythms at the pro-
tein level are typically damped and phase-delayed compared 
with the cognate mRNA rhythms, depending on the protein 
half-lives. Indeed, longer protein half-lives imply smaller oscil-
latory amplitudes and longer delays between mRNA and protein 
accumulation14. Analysis of liver proteomes in bulk showed that 
the number of cyclic proteins is lower than the number of cyclic 
mRNAs, with delays approaching the predicted maximum of 6 h. 
Here, we found genes from both Z + R and Z × R that exhibited 
rhythmic accumulation in bulk proteomics experiments, includ-
ing genes encoding rate-limiting enzymes, suggesting that patterns 
dually regulated by space-time have a physiological role in the  
liver. Moreover, phase delays between the mRNA and protein  
profiles were as expected. Future studies will utilize emerging  
spatial proteomics approaches to reconstruct a space-time liver  
proteomic atlas54.

In addition to previously discussed zonated liver functions8, a 
systematic querying of KEGG pathways highlighted Z + R func-
tions not previously associated with rhythmic liver zonation. The 
roles and profiles of the corresponding genes allowed us to better 
understand the spatio-temporal logic of the identified pathways. 
For instance, we found that the expression levels of both ribosome 
protein genes (rate-limiting for protein synthesis32) and proteasome 
components (involved in protein degradation) were higher in cen-
tral hepatocytes. Since the central environment is subject to high 
concentrations of xenobiotics and hypoxic stress, this could indicate 
an elevated protein turnover in this region, which would ensure that 
damaged proteins are rapidly exchanged with new, undamaged pro-
teins. This interpretation is corroborated by the observed increased 
levels of cytosolic and ER chaperones during the feeding phase, to 
assist protein synthesis and secretion, thereby counteracting such 
protein stress.

It has previously been shown that Wnt signalling can explain the 
zonation of up to a third of the zonated mRNAs7. Wnt ligands are 
secreted by pericentral NPCs, mostly endothelial cells5,6, forming 
a graded spatial morphogenetic field. As a result, and as observed 
in our enrichment analysis, Wnt-activated genes were pericen-
trally zonated. Moreover, both the scRNA-seq data and previous 
bulk mRNA and protein measurements showed that Wnt activ-
ity is rhythmic in the liver. Our smFISH analysis suggested that  

temporal fluctuations in the expression of Wnt2 and Rspo3, encod-
ing two key Wnt ligands, secreted by pericentral NPCs might under-
lie oscillatory and zonated expression of Wnt targets at times near 
the fasting–feeding transition.

In summary, we demonstrate how liver gene expression can be 
quantitatively investigated with spatial and temporal resolution and 
how liver functions are compartmentalized along these two axes. 
Our approach could be used to reconstruct spatio-temporal gene 
expression patterns in other zonated tissues such as the intestine 
and kidney3.

Methods
Animals and ethics statement. All animal care and handling were approved by the 
Institutional Animal Care and Use Committee of WIS and by the Canton de Vaud 
laws for animal protection (authorization VD3197.b). Male (C57BL/6JOlaHsd) 
mice aged of 6 weeks, housed under reverse-phase cycle and under ad libitum 
feeding (Teklad Global 18% Protein Rodent Diet) were used to generate scRNA-seq 
data of hepatocytes and for smFISH. Littermate controls were used for the ZT6 
and ZT18 time points. Male mice between 8 and 10 weeks old (C57BL/6J), housed 
under a 12:12 light–dark cycle, and that had access to food only during the night 
(Kliba Nafag 3242 Breeding, Vitamin-fortified, irradiated >25 kGy) were used for 
smFISH of circadian clock genes (Reporting Summary).

Hepatocytes isolation and single-cell RNA-seq. Liver cells were isolated  
using a modified version of the two-step collagenase perfusion method of Seglen55. 
The tissue was digested with Liberase Blendzyme 3 recombinant collagenase 
(Roche Diagnostics), according to the manufacturer’s instructions. To enrich for 
hepatocytes, we applied a centrifuge step at 30g for 3 min to pull down  
all hepatocytes while discarding most of the NPCs that remained in the 
supernatant. We next enriched for live hepatocytes by 2 cycles of Percoll  
gradient; the hepatocytes pellet was resuspended in 25 ml of PBS, and Percoll  
was added for a final concentration of 45% and mixed with the hepatocytes. 
Dead cells were discarded after a centrifuge step (70g for 10 min) and cells were 
resuspended in 10 cells buffer (1× PBS, 0.04% BSA), and then directly went into 
the 10x pipeline. The cDNA library was prepared with the V2 chemistry  
of 10x Genomics Chromium system according to manufacturer’s instructions, and 
sequencing was done with Illumina Nextseq 500 at estimated depth  
of 40,000 reads per cell. Overall, independent libraries were prepared at  
ZT0 (n = 3 biological replicates from individual mice), ZT6 (n = 2), ZT12 (n = 3) 
and ZT18 (n = 2).

Conceivably, the dissociation of liver tissue into individual cells and the 
purification of hepatocytes are relatively lengthy processes and may thus lead to 
alterations in mRNA expression. While it has been shown that mRNA levels do 
not change much during the purification and 24-h cultivation of hepatocytes56, 
transcription rates on the other hand can be diminished by 8- to nearly 100-fold 
during this process57. This difference between nascent transcript and mature 
mRNA levels can be explained by the relatively long half-lives of liver-specific 
RNAs. In our case, the time needed from the dissociation of the tissue until the 
cell lysis was approximately 1 h, and the cells were not placed in culture. Since we 
were measuring mature transcripts, with half-lives in the range of typically 1–5 h 
(Extended Data Fig. 2f), the changes in mRNA levels due to the protocol remained 
contained. In particular, the scRNA-seq of cells carried the typical hepatocyte 
gene expression signatures, for example genes such as Alb or Apoa2 rank at the 
second and fifth position genome-wide. As further validation, we compared our 
reconstructed gene expression zonation profiles with the zonation profiles from 
the massively validated zonation study of ref. 8, which revealed a near-perfect 
agreement (Extended Data Fig. 1f).

Filtering of raw scRNA-seq data. The initial data analysis was done in R v3.4.2 
using Seurat v2.1.0 (ref. 58). Each expression matrix was filtered separately to 
remove dead, dying and low-quality cells. We first kept only genes that were 
expressed in at least five cells in any of the ten samples. We then defined a set of 
valid cells with more than 500 expressed genes and between 1,000 and 10,000 
unique molecular identifiers (UMIs), and second an additional expression matrix 
with cells having between 100 and 300 UMIs, which was used for background 
estimation (Extended Data Fig. 1a). Other UMI filters have been tried, but yielded 
equally or less-reliable profiles. The mean expression of each gene was then 
calculated for the background dataset and subtracted from the set of valid cells. 
This was subsequently filtered to include only hepatocytes by removing cells with 
expression of non-parenchymal liver cell genes. Next, the cells were filtered on the 
basis of the fraction of mitochondrial gene expression. First, expression levels in 
each cell were normalized by the sum of all genes excluding mitochondrial and 
major urinary protein (Mup) genes. Indeed, as mitochondria are more abundant 
in periportal hepatocytes, the expression of mitochondrial genes is higher in this 
area59; since these genes are very highly expressed, including them would reduce 
the relative expression of all other genes based on the cell’s lobular location. Mup 
genes are also highly abundant, and mapping their reads to a reference sequence 
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is unreliable due to their high sequence homology60. Moreover, Mup genes 
encode pheromones that vary greatly between individuals to facilitate individual 
recognition61.

Mitochondrial content is often used to remove non-viable cells62. The 
mitochondrial content of sequenced hepatocytes exhibited a bimodal behaviour 
(Extended Data Fig. 1b). To identify the range of mitochondrial fractions that 
included viable hepatocytes, we used an intrinsic property of hepatocytes, which 
is the anticorrelation of the pericentral landmark gene Cyp2e1 and the periportal 
landmark gene Cyp2f2 (ref. 7) (Extended Data Fig. 1c). We found that hepatocytes 
with mitochondrial fraction in the range of 9–35% exhibited an almost perfect 
anticorrelation between Cyp2e1 and Cyp2f2 (Extended Data Fig. 1d,e), suggesting 
that these are the best quality, and we consequently kept hepatocytes within this 
range of mitochondrial content for further analysis.

t-SNE clustering. To validate that the expected spatial and temporal axes of 
variation are present in the scRNA-seq data, we generated a low-dimensional 
representation of all cells using the standard t-SNE63, a non-linear 
dimensionality-reduction technique that embeds high-dimensional data on a 
two-dimensional plane such that points that are similar in high-dimensional space 
are close together on the two-dimensional representation. We then coloured cells 
either by their position along the central-portal axis, or by time of day.

Spatial reconstruction of zonation profiles from scRNA-seq data. Choice of 
landmark genes. The reconstruction algorithm relies on a priori knowledge about 
the zonation of a small set of landmark genes to infer the location of the cells. 
Reference 8 used smFISH to determine the zonation pattern in situ of six such 
landmark genes and used them to reconstruct the spatial profiles of all other genes 
at a single time point. Since we here aimed at reconstructing zonation profiles at 
different time points, we could not rely on those landmark genes, which might be 
subject to temporal regulation. Therefore, we used an alternative strategy where 
we selected landmark zonated genes from ref. 8 (q < 0.2), with the additional 
constraints that those should be highly expressed (mean expression in fraction 
UMI of more than 0.01% and less than 0.1%), and importantly vary little across 
mice and time. Specifically, we calculated the variability in the mean expression 
(across all layers) among all mice for every gene and removed genes with ≥10% 
variability. This yielded 27 central (Akr1c6, Alad, Blvrb, C6, Car3, Ccdc107, Cml2, 
Cyp2c68, Cyp2d9, Cyp3a11, Entpd5, Fmo1, Gsta3, Gstm1, Gstm6, Gstt1, Hpd, 
Hsd17b10, Inmt, Iqgap2, Mgst1, Nrn1, Pex11a, Pon1, Psmd4, Slc22a1, Tex264) and 
28 portal (Afm, Aldh1l1, Asl, Ass1, Atp5a1, Atp5g1, C8a, C8b, Ces3b, Cyp2f2, Elovl2, 
Fads1, Fbp1, Ftcd, Gm2a, Hpx, Hsd17b13, Ifitm3, Igf1, Igfals, Khk, Mug2, Pygl, 
Sepp1, Serpina1c, Serpina1e, Serpind1, Vtn) landmark genes.

Reconstruction algorithm. The reconstruction algorithm is based on the algorithm 
in ref. 8 and was used in the modified version from ref. 19. Briefly, the expression of 
each landmark gene was normalized to its maximal expression over all cells. Then, 
for each cell, we divided the summed expression of all portal landmark genes by 
the summed expression of all portal and central landmark genes, resulting in a 
value μi between 0 and 1, which we used as the cell location in the liver lobule. We 
then compared the obtained μi with the distributions of cell locations from each 
of the layers from ref. 8, which yielded a matrix in which every cell has a given 
probability to belong to a given layer. These weights were then used to compute 
the mean expression of all genes in a particular layer. The procedure was applied 
independently on each mouse, yielding ten spatial gene expression profiles for each 
gene, given as fraction of UMI per cell.

Spatio-temporal analysis of liver gene expression profiles. Data. Each profile 
for the 14,678 genes includes 8 layers from the pericentral to the periportal zone 
and 4 time points: ZT0 (n = 3 biological replicates from individual mice), ZT6 
(n = 2), ZT12 (n = 3) and ZT18 (n = 2). The expression levels (noted as x) are then 
log-transformed as follows:

y ¼ log2 x þ Δð Þ � B ð1Þ

The offset Δ = 1 × 10−4 buffers variability in genes with low expression, while 
the shift B = −log2(11 × 10−5) changes the scale so that y = 0 corresponds to about 
10 mRNA copies per cell (we expect on the order of 1 M mRNA transcripts per 
liver cell).

Reference genes. For ease of interpretation (Fig. 2 and Extended Data Fig. 2), 
we used a set of reference circadian genes and a set of reference zonated genes, 
highlighted in several figures.

The reference core circadian clock and clock output genes are the following: 
Bmal1, Clock, Npas2, Nr1d1, Nr1d2, Per1, Per2, Cry1, Cry2, Dbp, Tef, Hlf, Elovl3, 
Rora and Rorc.

The reference zonated genes are the following: Glul, Ass1, Asl, Cyp2f2, Cyp1a2, 
Pck1, Cyp2e1, Cdh2, Cdh1, Cyp7a1, Acly, Alb, Oat, Aldob and Cps1.

Gene expression variance in space and time. To analyse variability in space and time 
(Fig. 2a) we computed, for each gene, the spatial variance Vx and the temporal 

variance VT. Let yx,t,j represent the expression profile, with j the replicate index, t ∈ 
{1,2,…,Nt} the time index, and x ∈ {1,2,…,Nx} the layer index. Then, Vx and VT are 
computed as follows:
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Nt

X

t

P
x

P
j yx;t;j � 1

Nx

P
x yx;t;j

 h i2

N2
j Nx

ð2Þ

VT ¼ 1
Nx

X

x

P
t

P
j yx;t;j � 1

Nt

P
t yx;t;j

 h i2

N2
j Nt

ð3Þ

Thus, the spatial variance Vx is computed along the space (and averaged 
over the replicates) for each time condition, and then averaged over time. The 
procedure is similar, symmetrically, for Vt.

Gene filtering. For the analyses in Fig. 2, we selected transcripts that were 
reproducible between replicates and were sufficiently highly expressed (see 
scatterplot in Extended Data Fig. 2d). To assess reproducibility across replicates, 
we computed the average relative variance of the spatio-temporal profiles over the 
replicates:
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We considered genes with values below 50% (Extended Data Fig. 2). To filter 
genes with low expression, we required the maximum expression level across layers 
and time points to exceed 1 × 10−5 (fraction of UMIs) which corresponds to y = 0 
or about 10 copies of mRNA per cell. While this was quite more permissive than 
previous scRNA-seq studies, it allowed us to keep most reference circadian and 
zonated genes. However, scRNA-seq has limited sensitivity, and some potentially 
important genes may have been removed in the filtering process. In the end, our 
filters kept 5,085 genes (1,437 were removed due to low expression, 4,733 due 
to high variance and 3,543 due to both), which were then used for subsequent 
analyses.

Mixed-effect model for spatio-temporal mRNA profiles. Since the data are 
longitudinal in space (eight layers measured in each animal), modelling the 
space-time profiles required the use of mixed-effect models. To systematically 
analyse the spatio-temporal mRNA profiles, we used a parameterized function. 
Specifically, the model uses sine and cosine functions for the time, and 
polynomials (up to degree 2) for space. Possible interaction between space and 
time are described as space-dependent oscillatory functions, or equivalently, 
time-dependent polynomial parameters. Our model for the transformed mRNA 
expression y reads:

yx;t;i ¼ μi þ μ xð Þ þ a xð Þ cos ωtð Þ þ b xð Þ sin ωtð Þ þ εx;t;i ð5Þ

Here t is the time, x the spatial position along the liver layers and i ∈ {1,2,…,10} 
the animal index. This function naturally generalizes harmonic regression, often 
used for analysis of circadian gene expression25, by introducing space-dependent 
coefficients:

μ xð Þ ¼ μ0 þ μ1P1 xð Þ þ μ2P2 xð Þ
a xð Þ ¼ a0 þ a1P1 xð Þ þ a2P2 xð Þ
b xð Þ ¼ b0 þ b1P1 xð Þ þ b2P2 xð Þ

8
<
:

Here, P1 and P2 are the Legendre polynomials of degrees 1 and 2, respectively; 
μ0, μ1 and μ2 represent the static zonation profile, a0 and b0 represent the global 
(space-independent) rhythmicity of the gene and a1, a2, b1 and b2 represent 
layer-dependent rhythmicity. εx,t,j is a Gaussian noise term with its s.d. being 
σ. In addition to the fixed-effect parameters described so far, we introduced a 
mouse-specific random-effect μi (with zero mean). This parameter groups the 
dependent layer measurements (obtained in the same animal) and thereby properly 
adjusts the biological sample size for the rhythmicity analysis.

Phases φ (related to peak times t through t = φ × 24/2π) and amplitudes A for 
each profile can then be computed for any layer from the coefficients a(x) and b(x):

φ xð Þ ¼ arctan2 b xð Þ; a xð Þð Þ A xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ2 þ bðxÞ2

q
ð6Þ

Note that peak-to-trough difference is 2A(x). The peak-to-trough ratio 
or fold change of the original expression levels is then 22A(x). We also note 
that an equivalent writing of the model formulates the problem in terms of 
time-dependent zonation parameters instead of space-dependent rhythmicity:

yx;t;i ¼ μi þ μ0 tð Þ þ μ1 tð ÞP1 xð Þ þ μ2 tð ÞP2 xð Þ þ εx;t;i ð7Þ
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where:

μ0 tð Þ ¼ μ0 þ a0 cos ωtð Þ þ b0sinðωtÞ
μ1 tð Þ ¼ μ1 þ a1 cos ωtð Þ þ b1sinðωtÞ
μ2 tð Þ ¼ μ2 þ a2 cos ωtð Þ þ b2sinðωtÞ

8
<
:

In this study, we fixed ω ¼ 2π
24h

I
 because the animals were entrained in a 24-h 

light–dark cycle and the low time resolution would prevent us from studying 
ultradian rhythms.

The model parameters, including the variance of the random effects and 
Gaussian noise strength σ, are estimated for each gene using the fit function from 
the Python library StatsModels (version 0.9.0). Nelder-Mead was chosen as the 
optimization method, and the use of a standard likelihood was favoured over the 
REML likelihood to allow for model comparison64. To prevent overfitting of the 
gene profiles, we added a noise offset σ0 = 0.15 (log2) to the estimated noise σ,  
in the expression of the likelihood function used in the mixed-effect model 
optimization.

Depending on the gene, the model presented in equations (5) and (7) may 
be simplified by setting all or some of the (fixed) parameters to 0. For example, 
a non-oscillatory gene profile would normally have non-significant aj and bj 
parameters. In practice, considering the fixed effects, 29 sub-models of various 
complexity can be generated. However, we added a few reasonable requirements 
to reduce the number of models. First, the intercept μ0 must be present in every 
model. Similarly, the parameters a0 and b0, providing a global rhythm, must be 
present in every rhythmic model. Finally, the parameters aj and bj for j = 0,1,2 must 
be paired to ensure a proper phase definition (equation (6)).

The models can then be classified in different categories, depending on the 
retained (non-zero) parameters (Fig. 2c):
•	 The model comprising only the intercepts μ0 and μi, termed flat or noisy (F/N).
•	 The models comprising only the intercepts and zonation parameters: μ1 and/or 

μ2, termed purely zonated (Z).
•	 The models comprising only the intercepts and rhythmic parameters: a0 and 

b0, termed purely rhythmic (R).
•	 The models comprising only the intercepts, zonated parameters and rhythmic 

parameters: μ1 and/or μ2, and a0,b0, termed independent (Z + R).
•	 The models comprising interaction parameters: aj and bj for j = 1,2, termed 

interacting (Z × R).
Note that we only plot the fixed effects in the predicted gene profiles. The 

Bayesian Information Criterion (BIC) is then used for model selection, enabling 
selection of the most parsimonious model for each gene. Consequently, the F/N 
class also contains noisy profiles, since genes that are not well fitted with any 
complex model will then be assigned to the simplest model. Additionally, it appears 
that, for some profiles, several competing models can result in close BIC values 
(see for example the discussion on Clock and Cry1 in the Results). Therefore, 
when assigning hard classes, if some models have a relative difference of less than 
1% in their BIC, we systematically keep the most complex model. Moreover, we 
also assigned probabilities to the different categories (F, Z, R, Z + R and Z × R), 
computed as Schwartz BIC weights65, which is useful in case of ambiguous 
classification (Supplementary Table 2). All best fits with their parameter values are 
listed in Supplementary Table 1.

Bulk RNA-seq dataset. A bulk liver RNA-seq dataset was obtained from ref. 25. 
These data was obtained from a sampling every 2 h for 24 h, with 4 replicates per 
time condition. For Extended Data Fig. 2e, we only compared genes for which 
rhythmicity did not change across layers, namely the R and Z + R categories. Note 
that since the scRNA-seq data has a lower temporal resolution and fewer replicates 
per time point, we found overall less rhythmic genes.

To assess gene rhythmicity, we used harmonic regression on the 
log-transformed profiles. Using the same notation as above, we define the two 
following models:

yt;i ¼ μþ ε
�

ð9Þ

yt;i ¼ μþ a cos ωtð Þ þ b sin ωtð Þ þ ε
�

ð10Þ

We then fit equation (8) and equation (9) to every transcript. Depending on 
the figure, we either kept the model with the lowest BIC (Extended Data Fig. 2e, for 
which we also compute the circular correlation coefficient66) or the ones having a 
significant rhythmicity according to a F test (Fig. 6).

KEGG pathway enrichment analysis. Functional annotation clustering from 
Enrichr67 for the categories F/N, Z and Z + R (which is then subdivided in central and 
portal), Zc + R (central zonated and rhythmic), Zp + R (portal zonated and rhythmic) 
and finally R was ran (https://maayanlab.cloud/Enrichr/) with standard parameters, 
using the standard KEGG 2019 Mouse set of pathways. The enriched pathways 
(adjusted P value < 0.1, standard Enrichr output test) were then further annotated to 
compute, for example the number of central/portal genes in each category and the 
phase of each gene. This analysis is available Supplementary Table 3.

smFISH. Analysis of Z + R and Z × R genes (Stellaris smFISH probes). Preparation 
of probe libraries, the hybridization procedure and imaging conditions were 
previously described19. Briefly, smFISH probe libraries were coupled to TMR, 
Alexa594 or Cy5. Cell membranes were stained with Alexa Fluor 488 –conjugated 
phalloidin (Rhenium A12379) that was added to GLOX buffer68. The portal 
node was identified morphologically on DAPI images based on bile ductile, and 
the central vein was identified using smFISH for Glul in TMR, included in all 
hybridizations. Images were taken as scans spanning the portal node to the central 
vein. Images were analysed using ImageM68. Quantifications of zonation profiles 
at different circadian time points were generated by counting dots and dividing 
the number of dots in radial layers spanning the portal–central axis by the layer 
volume.

Temporal analysis of circadian genes (RNA scope smFISH probes). smFISH of R 
genes were done on fresh-frozen liver cryosections (8 μm) embedded in O.C.T. 
Compound (Tissue-Tek; Sakura-Finetek), sampled every 3 h (from ZT0 to ZT21). 
RNAscope probes for Bma1l mRNA (Mm-Arntl, catalogue no. 438748-C3) 
and Per1 mRNA (Mm-Per1, catalogue no. 438751) were used, according to the 
manufacturer’s instructions for the RNAscope Fluorescent Multiplex V1 Assay 
(Advanced Cell Diagnostics). To detect the central vein, an immunofluorescence 
of glutamine synthetase (ab49873, Abcam, diluted 1:2,000 in PBS/BSA 0.5%/
Triton X-100 0.01%) was done together with smFISH. Nuclei were counterstained 
with DAPI, and sections were mounted with ProLong Gold Antifade Mountant. 
Liver sections were imaged with a Leica DM5500 widefield microscope and an 
oil-immersion ×63 objective. Z-stacks were acquired (0.2 μm between each Z 
position), and mRNA transcripts were quantified using ImageJ, as described 
previously in ref. 50. Pericentral (PC) and periportal (PP) veins were manually 
detected on the basis of glutamine synthetase immunofluorescence or on bile 
ducts (DAPI staining). The Euclidean distance between two veins and the distance 
from the vein of each mRNA transcript were calculated. mRNA transcripts were 
assigned to a PP or PC zone if the distance from the corresponding vein was 
smaller than one-third of the distance between the PP and PC veins (ranging from 
50 to 130 μm).

Wnt2, Rspo3 and Dkk3 expression in non-parenchymal cells (Stellaris smFISH 
probes). Preparation of probe libraries, hybridization protocol and imaging 
conditions were previously described19. The Aqp1, Igfbp7 and Ptprb probe libraries 
were coupled to TMR, the Wnt2 library was coupled to Alexa594 and the Dkk3 or 
Rspo3 library were coupled to Cy5. Cell membranes were stained with Alexa Fluor 
488 coupled to phalloidin (Rhenium A12379) that was added to GLOX buffer68. 
The central vein was identified on the basis of morphological features inspected in 
the DAPI and phalloidin channels and the presence of Wnt2-mRNA (detected by 
smFISH). Central vein niche NPCs were identified by co-staining of Aqp1, Igfbp7 
and Ptprb. The central vein area was imaged and the images were analysed using 
ImageM68. We counted dots of Wnt2, Rspo3 and Dkk3 expression (corresponding to 
single mRNA molecules) in NPCs lining the central vein and removed background 
dots larger than 25 pixels. We then divided the dot count by the segmented cell 
volume. In total, 1,420 NPCs from 189 central veins of at least 2 mice per time 
point (ZT0, ZT6, ZT12, ZT18) were imaged, and a Kruskal–Wallis test based on 
the mean mRNA dot concentration in each cell was performed to compare the ZT0 
and ZT18 time points.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All scRNA-seq data has been deposited in GEO with accession code GSE145197. 
Reconstructed spatio-temporal gene profiles are available as Matlab files at https://
github.com/naef-lab/Circadian-zonation The whole dataset of gene profiles along 
with the analysis is available online as a web-application at the URL https://czviz.
epfl.ch/. The application was built in Python using the library Dash by Plotly 
(version 1.0).

Code availability
The code for fitting the mixed-effects models and generating the main figures is 
available at https://github.com/naef-lab/Circadian-zonation
Details regarding the statistics, software and data are provided in the Reporting 
Summary.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | scRNA-seq pre-processing. a, Histogram of number of UMIs per cell barcode for each mouse. Red patches mark the cells used for 
background estimation (100-300 UMI/cell barcode), gray patches mark the cells used for downstream analysis (1000-10000 UMI/cell barcode).  
b, Histogram of fraction of all UMIs mapping to mitochondrial genes. Filter used for downstream analysis in grey (0.09–0.35). c, smFISH staining of a liver 
lobule with probes against Cyp2e1 (red) and Cyp2f2 (green). CV = central vein, PN = portal node. Overall, the data combine 10 images from from two mice. 
d, Expression of Cyp2e1 and Cyp2f2 in cells with different fraction of mitochondrial expression. Three different filters for the fraction of UMIs mapping to 
mitochondrial genes (0–0.09, 0.09–0.35, 0.35–1) were applied, the data of all mice merged and the resulting datasets visualized as t-SNE plots. e, Violin 
plots for the correlations between Cyp2e1 and Cyp2f2 expression in single hepatocyte populations with different filters for fractions of mitochondrial 
expression. Each dot represents one mouse (n = 10 mice for each distribution) and the shape of the violin represents the density of points. f, Comparison 
of the zonation profiles of Z and Z + R genes obtained in our current study and the previous reconstruction from Halpern et al. 8. Profiles were interpolated 
to fit 15 layers, where 1 is pericentral and 8 is periportal. Dots indicate the center of mass (expression-weighted lobule layer) of the Z and Z+R genes 
computed in both datasets, for gene having an average expression of at least 10−5 in Halpern et al. r is the correlation coefficient, p the corresponding 
p-value from a standard linear regression.
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Extended Data Fig. 2 | Log-transformed reconstructed profiles, pre-filtering of the genes and comparison with external datasets. a-c, Expression levels 
of the reconstructed profiles for the genes from Fig. 1f–h after log-transformation (Methods). Dots in represent data points from the individual mice. Lines 
represent mean expression per time point. Shaded areas represent one standard deviation (SD) across the mice (n=2 or n=3 depending on the time point, 
Methods). d, Biological variability of gene profiles across independent replicate liver samples, quantified in terms of the average relative replicate variance. 
0 shows perfectly reproducible profiles while 1 the most variable genes (Methods). Genes inside the bottom-right box (x-cutoff at 10−5; y-cutoff at 0.5) 
are selected and contain all but one of the reference genes. Colored dots show reference zonated genes (blue) and reference rhythmic genes (orange). 
e, Comparison of the peak times for rhythmic genes in R and Z+R, with the dataset from Atger et al. PNAS 25. Circular correlation coefficient is 0.746 
(Methods). f, Boxplot of the mRNA half-lives (data from Wang, J. et al. 35) shows that R genes as a group (median, orange line) are the shortest-lived. Box 
limits are lower and upper quartiles, whiskers extend up to the first datum greater/lower than the upper/lower quartile plus 1.5 times the interquartile 
range. Remaining points are marked. MW stands for the two-sided Mann-Whitney test, and KW stands for Kruskal-Wallis test.
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Extended Data Fig. 3 | Z+R and ZxR transcripts with corresponding rhythmic protein accumulation in bulk mass spectrometry data. a-b, Rhythmic 
proteins corresponding to Z+R (a) and ZxR (b) transcripts were selected from Robles et al., 27 (from original Supplementary Table 2), and fitted with 
harmonic regression (p-value of rhythmicity from F-tests are indicated above the plot). Only proteins having a p-value<0.01 are shown. c, Scatter plot of 
the phase of the fits from the transcripts (x-axis) against the phase of the fits from the proteins (y-axis). The diagonal is indicated with a dashed grey line, 
the theoretical upper bound (6 h) for the delay between mRNA and protein is indicated with a dashed red line. All rhythmic proteins (q<0.2 in the original 
analysis) are represented.
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Extended Data Fig. 4 | Additional validations for the Z+R category. a-b, smFISH (Stellaris, Methods) for Elovl3 (Z+R) and Arg1 (Z+R). smFISH 
quantifications were made for ZT0 and ZT12 (Methods). Left: representative images at ZT0, ZT12 for Elovl3 (a) or Arg1 (b). Pericentral veins (CV) and a 
periportal node (PN) are marked. Scale bar - 20 µm. Right: quantified profiles for each gene at the two time points from smFISH (top, line plot is the mean 
number of mRNAs, shaded area indicate SD across twelve images), and scRNA-seq data (bottom, line plot is mean expression, shaded area is SD across 
mice, n=2 or n=3 depending on the time point, Methods).
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Extended Data Fig. 5 | The core circadian-clock is not zonated. a, Spatial and temporal profiles and fits for circadian core-clock genes. Peak times are 
indicated on the temporal representation. For the genes Cry1 and Clock, additional dashed lines represent fits for the R model, as the Schwartz BIC weights 
from the R and Z+R models were close (Supplementary Table 2). b, Amplitudes and peak times of the core-clock circadian genes in a polar coordinate 
representation (clock-wise ZT times are indicated, distance from the center corresponds to the amplitude) show the expected organization of core clock 
transcript in the liver.
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Extended Data Fig. 6 | Spatio-temporal mRNA expression profiles for heat-responsive genes. Represented genes correspond to the top 200 targets 
from the ChIP-Atlas list for mouse HSF1. a, Polar plot representation of the transcripts that are R, Z+R, or ZxR among the HSF1 targets from the ChIP-Atlas 
(http://chip-atlas.org/). Genes involved in chaperone functions (chaperones, co-chaperones, or chaperone facilitators) are named. Color indicates 
zonation, while grey dots show purely rhythmic genes. b, Spatial representation of the transcripts corresponding to proteins involved in chaperone 
functions, separated in central (left, cytoplasmic function) and portal (right, endoplasmic reticulum function) zonation.
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Extended Data Fig. 7 | Rhythmicity of Wnt targets in bulk RNA-seq, and proteomics liver time series data. a, Enrichment of rhythmic genes (R, Z+R 
and ZxR) among the targets of the Wnt pathway, computed on the bulk dataset (Atger et al., 25). Targets above a given percentile (x-axis) of Apc-KO fold 
change are considered. The percentage of rhythmic genes in the whole Atger et al. dataset is indicated by a dashed blue line. b, Bulk mRNA (coming from 
Atger et al. dataset) rhythmicity profiles of Wnt targets among the top-50 targets with highest Apc-KO fold change. Gene profiles are centered around 
their mean. An enrichment of the phases around ZT8-14 is observed, in agreement with Fig. 6a. c, Polar plot representation of the individual gene phases 
and amplitudes represented in panel b (bulk data). d, Temporal representation of selected genes profiles from the scRNA-seq (top, n=2 or n=3 animals 
depending on the time point, Methods) and bulk proteomics (bottom, data from Robles et al. 27, n=2 replicates per time point sampled every 3 h) data. 
Represented profiles are ones with (1) the highest Apc-KO fold change, (2) a significantly rhythmic protein (p < 0.05, standard harmonic regression, 
F-test), and (3) belonging to the Z+R or ZxR category. e, Enrichment/depletion at different times (window size: 3 h), of both positive and negative Ras 
(N=31 and N=33, respectively) and Hypoxia (N=73 and N=41, respectively) targets (background: all R and Z+R genes). Colormap shows p-values 
(two-tailed hypergeometric test): red (blue) indicates enrichment (depletion).
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