


Hepatology Snapshot
The liver is a central organ that preserves physiological homeo-
stasis. It is a highly structured organ composed of hexagonal-
shaped anatomical units termed ‘liver lobules’. Blood rich in
oxygen enters the liver lobule at peripheral portal tracts and
drains out through the central vein. Conversely, bile flows out-
wards from the lobule centres and drains out through portal bile
ducts.1 Hepatocytes, the main liver cell type, are arranged in
hepatic plates that extend radially along the lobule axis. At the
basolateral domains, hepatocytes face fenestrated endothelial
cells that form the radial sinusoidal blood vessels. Hepatic stel-
late cells (HSCs), vitamin A storing cells that can become extra-
cellular matrix producers, reside in the “space of Disse” between
hepatocytes and the sinusoids. Kupffer cells (KCs), the liver
resident macrophages, are largely immotile cells residing within
the sinusoids. As blood flows inwards, hepatocytes take up and
secrete nutrients and sense hormones (insulin, glucagon, growth
and thyroid hormones). Sequential hepatocyte consumption and
production, together with local tissue morphogens, give rise to a
graded microenvironment. In line with these gradients, liver
functions are non-uniformly distributed along the lobule radial
axis, a phenomenon that has been termed “liver zonation”.2,3

Hepatocyte zonation patterns seem to optimize overall liver
function, in the face of structural constraints.4 Processes that are
energetically demanding, such as protein secretion and gluco-
neogenesis, are allocated to the portal layers, where oxygen is
more abundant. Mid-lobule hepatocytes specialize in the secre-
tion of the iron-regulating hormone hepcidin, among other
tasks. Pericentral hepatocytes preferentially engage in xenobiotic
metabolism, bile acid biosynthesis and glycolysis, which are less
energetically demanding processes.4,5 Some zonated processes
exhibit spatial recycling of material. An example is the urea cycle,
where periportal hepatocytes detoxify ammonia to generate
urea, a task that requires the breakdown of glutamine into
glutamate.1 Pericentral hepatocytes, in turn, take up the excess
glutamate and reconvert it to glutamine, thus maintaining amino
acid balance at the entries and exits of the lobule. Additional
examples of opposite zonated tasks include periportal produc-
tion and pericentral uptake of glucose, as well as periportal
cholesterol biosynthesis and pericentral cholesterol consump-
tion. Some pathways, such as the neutral bile acid biosynthesis
cascade, follow ‘production line’ patterns, whereby sequential
enzymes in the cascade are expressed in sequential lobule
layers.4,5 Of note, there are discrepancies between human and
mouse zonation.6

The Wnt pathway stands out as a major regulator of hepatic
zonation, as about a third of hepatic zonated genes are Wnt
targets.3 The pericentral liver endothelial cells are a source of key
Wnt-pathway ligands such as Wnt2, Wnt9b and Rspo3,7 the latter
also expressed by pericentral HSCs.8 Pericentral HSCs further
express elevated levels of Sox4 and Adamtsl2, whereas periportal
HSCs exhibit zonated expression of Ngfr, Il34 and
Tagln.8 Periportal KCs are more abundant, larger and exhibit
higher phagocytic activity compared to pericentral KCs.9 Peri-
portal KCs produce more Tnfa and Pge2, while pericentral KCs
produce more Il-1.9

Liver zonation can explain zonated damage in liver pathology.
The zonated processes of xenobiotic metabolism lead to peri-
central damage upon overdoses of drugs such as acetaminophen.
This is due to the accumulation of toxic intermediates exclusively
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in the hepatocytes that express the detoxification machinery,
especially Cyp2e1 and Cyp1a2.10 Pericentral injury is also asso-
ciated with the activation of pericentral HSCs.7 The development
of non-alcoholic and alcohol-related liver diseases mostly begins
in the pericentral zone as well, potentially linked to its higher
lipogenic activity.5 Periportal damage is observed in autoim-
mune hepatitis, in part due to the zonated expression of antigens
such as CD54 and CD58,11 and in biliary diseases, due to the
damage to epithelial cells that form the periportal bile duct.5
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