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Gene expression in metabolic tissues can be regulated at multiple levels, ranging from the con-

trol of promoter accessibilities, transcription rates, mRNA degradation rates and mRNA localiza-

tion. Modulating these processes can differentially affect important performance criteria of

cells. These include precision, cellular economy, rapid response and maintenance of DNA integ-

rity. In this review we will describe how distinct strategies of gene regulation impact the trade-

offs between the cells’ performance criteria. We will highlight tools based on single molecule

visualization of transcripts that can be used to measure promoter states, transcription rates and

mRNA degradation rates in intact tissues. These approaches revealed surprising recurrent pat-

terns in mammalian tissues, that include transcriptional bursting, nuclear retention of mRNA,

and coordination of mRNA lifetimes to facilitate rapid adaptation to changing metabolic inputs.

The ability to characterize gene expression at the single molecule level can uncover the design

principles of gene regulation in metabolic tissues such as the liver and the pancreas.
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1 | INTRODUCTION

A fundamental feature of the mammalian body is the strict mainte-

nance of homeostatic blood glucose levels. These levels are main-

tained at a tight range of around 100 mg/dL for human, in spite of

large fluctuations in the amounts of glucose ingested during meals

and consumed by our peripheral tissues during times of physical activ-

ity.1 Homeostatic glucose control is a result of the coordinated actions

of the endocrine pancreas and of the liver. The endocrine pancreas

acts as the “metabolic brain,” sensing blood glucose levels and corre-

spondingly releasing large quantities of insulin and glucagon in times

of food intake or fasting, respectively. The liver, which has been

termed the “glucostat” of our body is the main producer of glucose

during fasting states, and responds to these pancreatic hormonal sig-

nals by rapidly switching between glucose consumption and produc-

tion in response to ingested meals and activity. While metabolic

homeostasis is clearly controlled by additional organs-the brain, fat

and muscles, in this review we will focus on the pancreatic endocrine

cells and on hepatocytes. We will discuss distinct transcriptional strat-

egies employed by these cells that enable them to produce sufficientLydia Farack and Adi Egozi have contributed equally to this work.
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amounts of mRNA at the right time with high precision and minimal

variability, in spite of challenging constraints. While homeostatic con-

trol involves multiple regulatory tiers, including a wide array of post-

transcriptional processes, we will focus on the processes that involve

mRNA production and degradation rates, amounts and intra-cellular

localization. Technological advances that enable quantitative measure-

ments of mRNA in intact tissues have facilitated studying these pro-

cesses of transcriptional control in tissue cells at unprecedented

sensitivity and spatial resolution.

2 | METABOLIC TISSUES ARE
HETEROGENEOUS IN THEIR CELLULAR
COMPOSITION

Tissues are composed of heterogeneous pools of cells that usually

operate in highly structured microenvironments.2,3 Each tissue is com-

posed of parenchymal cells that perform the main tissue tasks, for

example, the endocrine cells in the pancreatic islets of Langerhans,

the hepatocytes in the liver or the enterocytes in the intestine. These

parenchymal cells interact with non-parenchymal cells that support

tissue functions and include endothelial cells, pericytes, fibroblasts,

tissue resident macrophages and other immune cells. Understanding

the interactions between these different cell types is crucial in order

to dissect tissue function. This high diversity of cell types raises the

importance of using single cell approaches to analyze biological pro-

cesses in tissues, as opposed to bulk analyses, which average out this

diversity.4,5

The large milieu of distinct cell types that make up our organs is

not the only source of cellular heterogeneity. Even when considering

a seemingly uniform population of parenchymal cells, there remains a

high degree of molecular diversity related to the locations of cells in

tissues and their interactions with local niches. In the liver, hepato-

cytes operate in polarized “lobules,” in which centripetal blood flow

creates gradients of oxygen, nutrients and hormones.6–8 Indeed, it has

been shown that around 50% of the hepatocyte genes are expressed

non-uniformly along the liver lobule radial axis, with a spatial division

of labour that seems to allocate distinct functions to the more suitable

lobule microenvironments.9 For example liver energy-demanding bio-

synthetic processes that include protein secretion and gluconeogene-

sis are allocated to the lobule regions that receive more oxygen. The

islets of Langerhans also exhibit several sources of spatial heterogene-

ity related to the position of cells relative to blood vessels, the para-

crine interactions with other cells types and the distances from the

islet periphery.10 These spatial sources of variations can potentially

give rise to distinct sub-populations with specific allocation of func-

tion to distinct islet niches.11–17 Indeed, single cell RNA sequencing

highlighted diversity in gene expression among individual islet

cells.18–22 In addition to these “extrinsic” sources of variations, related

to spatial locations and cell-cell contacts, tissue cells may be intrinsi-

cally different at the level of epigenetic features such as methylation

patterns, chromatin states, 3D chromosomal conformations and more.

3 | SINGLE MOLECULE APPROACHES FOR
QUANTIFYING GENE REGULATION IN
INTACT MAMMALIAN TISSUES

The multiple sources of heterogeneity in tissues highlight the importance

of using quantitative tools to measure gene expression in single cells in

the intact tissue. Single molecule fluorescence in situ hybridization

(smFISH) has emerged as a powerful approach to achieve this goal.23–25

In an intact tissue, smFISH enables visualizing individual mRNA mole-

cules of any gene of interest using libraries of singly labelled DNA

sequences, or “probes,” that are designed to be complementary to

sequential parts of the mRNA of interest.24 Through the local accumula-

tion of multiple probes, individual mRNA molecules are revealed as dif-

fraction limited spots of light under a fluorescence microscope

(Figure 1A). Moreover, by designing probes against the introns of genes

of interest one can visualize and quantitatively infer the dynamic pro-

cesses of transcription and mRNA degradation.26,27 Since introns are

generally spliced and degraded co-transcriptionally, intact intronic seg-

ments are expected to appear only at nascent mRNAs that reside at the

active transcription sites on the DNA (TS, Figure 1B). These can then be

readily identified and quantified to infer the average accessibility of pro-

moters of interest, the average RNA polymerase (RNAP) coverage for a

gene, and as a result the average transcription rate. With additional mea-

surements of the total numbers of transcripts in a cell one can also infer

the average mRNA degradation rates. This approach has been applied to

diverse mammalian tissues such as the liver and the intestine,26,27 and

lately also in the intact pancreas, a tissue traditionally considered highly

challenging for in situ studies (Figure 1, Farack et al., submitted). Since

smFISH is a spatially resolved method it also has the power to identify

the location of transcripts within the cells. This can reveal patterns of

intra-cellular spatial heterogeneity that can affect translation, such as

nuclear retention or basal-apical mRNA polarization.28

The ability to interrogate gene expression in single cells at the sin-

gle molecule level in intact tissues opens avenues to explore the

design principles of gene regulation in tissues. In the next sections we

will describe the trade-offs associated with different gene expression

strategies, and examples of the use of smFISH to characterize them in

the pancreas and liver.

“Single molecule approaches are emerging as

powerful tools to interrogate the processes of

transcription, mRNA degradation, intra-cellular

localization and translational control in single

cells within intact tissues.”
4 | PERFORMANCE TRADE-OFFS GOVERN
THE BALANCE BETWEEN TRANSCRIPTION
AND mRNA DEGRADATION

Cellular amounts of mRNA are a result of the balance between tran-

scription rates and mRNA degradation rates. These rates span several

orders of magnitude for different genes and different cell types.29,30 To

understand the trade-offs entailed in different gene expression strate-

gies let us consider two hypothetical genes, the transcripts of which
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are expressed at an average level of 5 mRNAs per cell (Figure 2A). The

first gene is transcribed at an average rate of 5 mRNA molecules per

hour and has relatively unstable mRNAs that are degraded at a rate of

once per hour (Figure 2A.1). The second gene is transcribed at an aver-

age rate of 1 mRNA molecule per hour but has more stable transcripts

that are degraded on average once every 5 hours (Figure 1A.2). Pro-

ducing the second gene requires less energy compared to the “futile

cycle” of transcription-degradation associated with the first gene. Thus

the second strategy seems more economical in terms of cellular

resources. The downside, however, is that switching to a new steady-

state level would take more time for the second gene (Figure 2B). If cel-

lular levels need to be rapidly reduced, the first gene could achieve a

2-fold decrease in less than an hour of cessation of transcription

(Figure 2B, orange line), whereas for the second gene a similar decrease

will take around 4 hours (Figure 2B, gray line). A similar acceleration in

the response time of a gene that has high mRNA degradation rates

occurs when switching transcription back on again (Figure 2B). Thus

the particular rates of transcription and mRNA degradation could be

governed by a trade-off between cellular economy and response

time.31 Another strategy for dynamically regulating cellular mRNA

levels could entail a change in mRNA degradation rates without chang-

ing the rates of transcription (Figure 2C,D). In this case, degradation

rate could be specifically increased in response to external stimuli, lead-

ing to lower cellular mRNA levels. Since the response time depends

only on mRNA degradation rates (Figure 2B,D), such strategy would

lead to an asymmetric response profile with rapid shut-down of cellular

mRNA when degradation rate is increased, but a slow ramp-up of cellu-

lar mRNA levels when reverting to the original steady state (Figure 2D).

This economy-response time trade-off is exemplified by the expres-

sion of liver gluconeogenic genes. Using smFISH techniques, Bahar Hal-

pern et al measured the average transcription rates and mRNA

degradation rates for different genes in the intact liver.26 The genes

G6pc, encoding the enzyme glucose-6-phosphatase, and Pck1, encoding

the enzyme phosphoenolpyruvate carboxykinase 1, exhibited intense

and frequent transcription sites in a fasted state, with around 30 RNAPs

engaged in transcription for each gene copy. The estimated lifetimes of

the mRNAs for these genes were around 20 to 30 minutes. These mRNA

lifetimes are significantly shorter than the median reported lifetime of

9 hours for mammalian transcripts.30 Consistent with these excessively

short mRNA lifetimes, cellular mRNA levels declined by more than 3-fold

within 60 minutes of re-feeding of fasted mice, when transcription of

these genes abruptly stopped.26 A similar decrease was also seen at the

protein levels.26 One of the main functions of the liver is to act as a

“glucostat,” constantly regulating blood glucose levels in face of external

perturbations such as meals and exercise. Shutting down these 2 main

enzymes responsible for hepatic glucose output therefore seems impor-

tant to avoid excessive increase in blood glucose levels following a meal.

Enzymatic activities can be regulated at post-translational levels, for

example, by protein modifications such as phosphorylation. It is interest-

ing that in the liver, gene regulation for these important enzmyes is per-

formed at the very basic level of transcription and mRNA degradation.

“mRNA degradation rates dictate the response

time of cellular mRNA levels.”
5 | BURSTY TRANSCRIPTION, THE
FIDELITY-NOISE AND RESPONSE-NOISE
TRADE-OFFS

Our picture of mRNA production considered a single rate that modu-

lates the amounts of actively transcribed mRNA. Studies in a range of

Glul-exon Glul-intron

(A) (B)Glul Glul-exons
Glul-introns

FIGURE 1 smFISH enables visualizing mature and nascent transcripts in intact tissues. A, An islet of Langerhans in the intact mouse pancreas

stained with smFISH probe library complementary to the mRNA of Glul, which is encoding the enzyme glutamate-ammonia ligase (glutamine
synthetase, gray dots). DAPI-stained nuclei are in blue and phalloidin in red marks the cell membranes. Scale bar is 20 μm. B, Co-localization of
exonic probes in red and intronic probes in green reveal the active transcription site of Glul, which is marked by an arrow. DAPI is in blue. Scale

scale bar is 10 μm
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organisms, from bacteria, through yeast and mammals demonstrated

that transcription of many genes is not a continuous process but is

rather stochastic, leading to punctuated production of

transcripts.26,32–37 These transcripts seem to be produced non-

uniformly over time in transcriptional “bursts” (Figure 3). The precise

biochemical nature of these bursts is not clear, but could entail

dynamic shifts of the chromatin between a nucleosome wrapped

“closed” state and an “open” state, governing the promoter
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FIGURE 2 Degradation rates of mRNA govern response times to changes in transcription. A, A cartoon representing two hypothetical genes with

similar numbers of mature mRNA molecules but different transcription and degradation rates. These rates can be measured in smFISH
experiments. Gene (1), which is transcribed at a high rate, will exhibit intense fluorescent transcription sites (TS) due to the local accumulation of
fluorophores on nascent mRNA that are attached to advancing RNA polymerase molecules. Gene (2), which is transcribed at a lower rate but
produces more stable mRNAs will exhibit less intense TS but similar numbers of mRNA molecules. B, Transcript degradation rates (δ) determine
the response time of mature cellular mRNA to changes in transcription rate (μ). High rates facilitate a rapid response (1, orange curve), whereas
low rates lead to a slow response (2, gray curve) when the transcription turns off or on. C, Switching between steady states through modulation
of mRNA degradation rates leads to an asymmetric response. Shown is a hypothetical gene (3) for which the degradation rate changes from low
to high levels. D, since response time is governed by mRNA degradation rates, the transitions between steady states are asymmetric—fast
response when degradation rate is high, slow response when degradation rate is low
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accessibility to activating transcription factors.33 Under this picture of

bursty transcription the rate of mRNA production now depends on

two independent parameters-the “burst frequency” and the “burst

size.” The burst frequency is the rate of switching between active and

inactive states and governs the fraction of time a gene is in the tran-

scriptionally active state. The rate of RNAP recruitment during an

active state is given by the “burst size.” Both of these parameters can

be measured in situ using smFISH. The burst frequency correlates

with the fraction of DNA loci, that are actively transcribed at any

given moment, whereas the RNAP occupancies, extracted from the

intensity of the nuclear TS dots, correlate with the burst size.26,27

What could be the advantages of producing transcripts in inter-

mittent bursts? One could be the protection of DNA from mutagenic

agents. DNA in a closed conformation is inaccessible to such potential

insults and therefore genomic fidelity is increased.38 Another advan-

tage could be the compact packaging of DNA, thus clearing up the

congested nuclear volume for diffusion of transcripts and transcrip-

tion factors.39 A potential disadvantage of bursty transcription is that

it can generate temporal fluctuations in the mRNA content of a cell.

During the periods at which the promoter is inaccessible, mRNA deg-

radation reduces the amounts of cellular mRNA, whereas the cellular

mRNA levels increase during an open state (Figure 3B). These tempo-

ral fluctuations in mRNA content that are caused by the stochastic

nature of bursty transcription have been termed “gene expression

noise.”33,34 They can generate profound variations in the cellular state

of a given cell over time (Figure 3B) and differences in cellular states

of similar cells that sense the same environment. Such variability could

be advantageous in some contexts, for example, to facilitate diverse

responses to environmental challenges.34 However, when cellular

function depends on a fine-tuned level of expression, as it is often the

case in metabolic tissues, intrinsic variability could potentially reduce

overall performance.26

The impact of bursty transcription on the amount of noise can be

minimized when mRNA lifetimes are long. During the stochastic

periods between bursts, when a gene is transcriptionally silent, mRNA

levels decline as transcripts are degraded. A low mRNA degradation

rate leading to a long mRNA lifetime effectively buffers the noise cre-

ated by bursts, as mRNA levels barely go down before another burst

occurs (Figure 3B).

In the mammalian liver, burst fractions have been quantified for

several genes. Notably, bursty transcription and mRNA lifetime were

coordinated in a way that minimizes gene expression noise. Some

genes, such as Actb (Figure 4B), are transcribed in rare bursts, but

have stable mRNA with a half-life of around 14 hours.26 Others, such

as the β-cell gene Acly (Figure 4A) and the liver gluconeogenic genes

Pck1 and G6pc, are expressed in a non-bursty manner. Pck1 and

G6pc are hepatocyte genes with short mRNA lifetimes, to facilitate

rapid response to metabolic stimuli. In fasted states, when hepato-

cytes should provide constant glucose flux, their non-bursty mode

ensures relatively homogenous and stable cellular transcript content.

In summary, frequencies of transcriptional bursts and mRNA lifetimes

shape the noise-response trade-off that cells face.

“Transcription in metabolic tissues often

occurs in stochastic bursts, leading to fluctua-

tions in the cellular mRNA content.”
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6 | BURSTY TRANSCRIPTION LIMITS THE
MAXIMAL TRANSCRIPTIONAL OUTPUT
FROM A GENE

Producing mRNA in transcriptional bursts introduces another challenge

to cells-it limits the maximal transcriptional output from a gene. To under-

stand this limitation, let us consider a toy model of transcription where a

train of RNAPs that fully covers the body of a gene of interest advances

at a constant rate along the gene (Figure 5A). The affinity of the RNAP to

the target promoter is so high that whenever a RNAP molecule falls off

the 30 end of the gene and the RNAP train proceeds, a new RNAP imme-

diately binds the freed-up space at the 50 end of the gene. At steady

state, the limiting rate of mRNA production for such a gene is dictated by

the footprint of the RNAP and its speed. Since the footprint of the RNAP

II is around 40 bps,40 and its speed is around 34 bps/s,26 the maximal

transcriptional output is around 0.85 mRNA per second, or 2600 mRNA

per hour (Figure 5A). A bursty gene that is active only 50% of the time

will reach at most 50% of this output, and generally less, due to the initia-

tion phase of filling up the gene body with RNAPs when a burst initiates.

Notably, the longer the gene, the longer it will take until the gene body is

completely covered with RNAPs and until the first transcript is released.

This could be substantial, as a typical gene of size 27 kbps41,42 will exhibit

an initiation phase of at least 13 minutes. Thus, cellular transcription rates

of a gene expressed in a diploid mammalian cell cannot exceed a few

thousands of nascent mRNAs per hour. Therefore, maintaining a high

steady state of mRNA levels would require extending mRNA lifetime. As

discussed above, this limits the cell's ability to rapidly switch between

steady states in response to environmental conditions.

Cells in the pancreas and liver produce massive amounts of

secreted proteins. The genes encoding these secreted proteins often

exhibit very high levels. The β-cell seems to be the most extreme exam-

ple, with more than 25% of its mRNA content represented by tran-

scripts of insulin (Figure 5B). Indeed, the lifetime of insulin mRNA is

relatively long with approximately 30 to 80 hours depending on the

metabolic state.43 Presumably, these long mRNA lifetimes facilitate

achieving the required high mRNA levels for this gene. Another example

for an abundantly expressed gene is Glul, which encodes the enzyme

glutamate-ammonia ligase (glutamine synthetase), in hepatocytes that

(A)

Acly-introns

Acly-exons

ActB-exons

ActB-introns

Glul-exons

(B) (C)

central vein

FIGURE 4 Examples of bursty and non-bursty transcription in the pancreas and liver. A, Acly mRNA is expressed in a non-bursty manner in

pancreatic β-cells. Co-staining of β-cells in the intact pancreas with probes for exonic (red) and intronic (green) regions reveal non-bursty
transcription sites of Acly. (B) In hepatocytes, ActB exhibits bursty expression, whereas (C) Glul is expressed in a non-bursty manner around the
central vein of a liver lobule. Transcriptions sites are indicated by arrows. DAPI is in blue. Scale bar is 5 μm for (A,B) and 10 μm for (C)
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surround the central vein of a liver lobule. This gene seems to be

expressed in a non-bursty manner, in this tissue with intense TS appar-

ent with smFISH (Figure 4C). In contrast, ActB is expressed in a bursty

manner within hepatocytes, with rare TS (Figure 4B). The limited tran-

scriptional output from genes poses an abundance-response trade-off—

to achieve high steady state abundance of mRNA the cell must impose

a long mRNA lifetime, limiting the ability of the gene to efficiently

respond to stimuli by rapidly changing steady state levels.

“Bursty transcription protects DNA but limits

the transcriptional output and generates cell-to-

cell variability”
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FIGURE 5 Long mRNA lifetimes are required for achieving high mRNA levels of key metabolic genes such as insulin and glucagon. A, The

transcriptional output from a gene is dictated by the duration and frequency of a burst as well as by the occupancy and speed of RNAPs. A toy
model of transcription with a train of RNAPs that fully covers the body of a gene of interest. The occupancy of a gene with RNAPs depends on
the gene length and the footprint of the RNAP (f ≈ 40 bp). RNAPs advance at a constant speed (v ≈ 34 bp/s) along the gene. Notably, the longer
the gene, the longer it will take until the gene body is completely covered with RNAPs and until the first transcript is released. When the gene is
fully covered, transcription rate is maximal and independent of gene length. It is limited by the time to displace a single RNAP (μ ≤ v/f
= 0.85RNA/s). When transcription rate is maximal, mRNA stability becomes the limiting factor for cellular mRNA levels. B, Insulin and glucagon
take up an exceedingly high fraction of total cellular mRNA in pancreatic islet cells. These high levels require both elevated transcription rates and
increased mRNA stability. Shown are the fraction of total cellular mRNA molecules allocated to the most highly expressed genes in 107 cell types
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7 | BUFFERING MECHANISMS THAT
REDUCE THE VARIABILITY GENERATED BY
BURSTY TRANSCRIPTION

An important requirement for cells operating in metabolic tissues may

be a fine-tuned level of expression for genes, particularly the ones

involved in maintaining physiological homeostasis. If this were indeed

the case, we could have expected that such genes would not be

expressed in noisy bursts. It, therefore, came as a surprise that in the

intact mammalian liver key liver genes were found to be expressed in

bursts.26 Notably, however, several mechanisms are at play to reduce

the impact of bursty transcription on cellular variability. One mecha-

nism, which was already discussed above involves the coordination of

burst frequencies and mRNA lifetimes. When mRNA lifetimes are long

compared to the periods at which a promoter is in a closed state, cellu-

lar mRNA levels decline only slightly before the next burst occurs

(Figure 3B, orange line). Indeed, many bursty genes in the liver have

long mRNA lifetimes.26

A second surprising mechanism for buffering the transcriptional

noise that is associated with bursty transcription is related to the intra-

cellular localization of transcripts. The traditional view of mRNA lifetime

posits a short nuclear mRNA period of a few minutes and a relatively

long cytoplasmic period of hours, during which transcripts are translated

and eventually degraded.44–46 In contrast to this picture, smFISH and

transcriptomics of nuclear and cytoplasmic cell fractions demonstrated

that up to 14% and 30% of the protein coding genes in hepatocytes

and β-cells, respectively, have more mRNA copies in the nucleus com-

pared to the cytoplasm.47 These nuclearly retained genes included criti-

cal genes such as Gck and Mlxipl, which are encoding the enzyme

glucokinase and the transcription factor Chrebp, respectively

(Figure 6B,C). Using simulations and transcript counting, it was demon-

strated47 that nuclear retention of mRNA can buffer cytoplasmic noise.

While nuclear mRNA content can fluctuate in line with bursty transcrip-

tion, the delay in the export of transcripts to the cytoplasm produces a

constant “trickle” of mRNA from the nucleus, and therefore balances

cytoplasmic mRNA levels between bursts (Figure 6A).47–50

Diverse mechanisms can give rise to the broad nuclear retention

of mRNA in β-cells and liver. At least for some of the nuclearly

retained genes, there seems to be a substantial co-localization

between the nuclear mRNAs and nuclear speckles,51 membrane-less

organelles with diverse functions such as post-transcriptional splicing.

Other processes could include a slow bulky diffusion through the

nuclear space, or retention at the 3’ UTR of the genes.

“Elongated lifetime of mRNA and nuclear

retention buffer the cytoplasmic mRNA content

from burst-associated fluctuations.”
8 | mRNA LOCALIZATION AND POST-
TRANSCRIPTIONAL REGULATION

Nuclear retention of mRNA can potentially have another utility—

facilitating an abrupt increase in cytoplasmic mRNA content in

response to external stimuli. Transcription is a slow process, and de

novo production of transcripts takes on average 15 minutes. In cases

where rapid changes in protein content are needed one could envision

a faster response if nuclearly retained mature spliced transcripts

would be released into the cytoplasm in a regulated manner.52 Thus,

regulated nuclear retention can facilitate rapid translational response.

Indeed, in response to glucose stimulation β-cells increase the transla-

tion of many mRNAs by around 1.3-fold and proinsulin even by up to

10-fold.53 It will be interesting to explore whether this abrupt transla-

tional response is facilitated by regulated release of nuclearly retained

transcripts.

Translational responses in metabolic tissues have also been linked

to intra-cellular mRNA localization within the cytoplasm. The intesti-

nal epithelium is a monolayer of epithelial cells that have basal sides

that face the blood stream and apical sides that face the lumen. In a

recent study, Moor et al. uncovered global apico-basal polarization of

mRNAs of around 30% of the genes in intestinal epithelial cells.28

Strikingly, the localization of mRNAs did not generally match those of

the encoded proteins. Rather, ribosomes were more abundant on the

apical sides of the cells and consequently apical mRNAs were more

efficiently translated (Figure 7A). In response to feeding, mRNAs of

specific genes translocated from the ribosome-depleted basal cell side

to the ribosome-enriched apical cell side, with an associated specific

rapid increase in their translation. β-cells are also highly polarized epi-

thelial cells (Figure 7B), with a basal side facing a vein and apical side

surrounded by an arteriole.54–58 Distinct β-cell faces have been shown

to have different properties. The lateral sides are enriched with mole-

cules such as the glucose transporter Glut259 and are the sides of

more active insulin secretion60 whereas the apical sides are sites of

primary cilia projections.55 smFISH opens avenues for exploring

mRNA polarization and its impact on translational control in the cyto-

plasm of β-cells in the intact pancreas.

9 | MICRORNA AND RNA BINDING
PROTEINS COULD POTENTIALLY RESOLVE
THE ABUNDANCE-RESPONSE TRADE-OFF

We have highlighted a fundamental trade-off associated with mRNA

lifetime-achieving an elevated steady state mRNA level and minimizing

gene expression noise requires an elevated mRNA lifetime. This, how-

ever, comes at a cost of slowing down the time required to shift

between distinct steady states. A potential regulatory mechanism to

alleviate this trade-off is to specifically increase mRNA degradation

rates in times of shifts in steady state levels (Figure 2C,D). Alterations

of mRNA lifetime can be regulated by RNA binding proteins and micro-

RNAs.61 MicroRNAs, which are incorporated into the RNA-induced

silencing complex (RISC) and accelerate RNA degradation, are attrac-

tive regulatory molecules, as their active form can be specifically pro-

duced in a rapid manner without the need for protein translation.62

Indeed, microRNAs carry important roles in maintaining β-cell function

and identity.63,64 It will be interesting to assess the role of microRNA in

facilitating rapid shifts in steady states during feeding/fasting, particu-

larly for the highly abundant islet genes. Furthermore, microRNAs and

the accumulation of translationally repressed messenger ribonucleo-

proteins in P-bodies are suggested to play an important role in
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inhibiting mRNA translation.65,66 These features become important for

regulating and fine-tuning translation events upon rapid changes and

could also enable highly abundant transcripts such as insulin mRNA to

rapidly change the steady state of translation.

10 | OUTLOOK

Single molecule approaches are emerging as powerful tools to interro-

gate the processes of transcription, mRNA degradation, intra-cellular

localization and translational control in single cells within intact tissues.

The ability to visualize these processes with high sensitivity and spatial

resolution offers unique opportunities to characterize the basic pro-

cesses of gene regulation in the pancreas and in other metabolic organs,

and to identify pathological features of miss-regulation in diabetes. A

limitation of single molecule FISH is its low-throughput-due to limita-

tions on the numbers of fluorophores that can be simultaneously

detected one cannot typically visualize more than 3 to 4 genes in a

smFISH experiment. New technologies enable dramatically expanding

this limit to hundreds of genes simultaneously detected in the same cell,

using combinatorial labelling of probe libraries and multiple rounds of

hybridizations.67–70 Other approaches combine smFISH with massively

parallel RNAseq to characterize with higher detail sub-populations of

cells with particular transcriptional features.9,71–74 Combining smFISH

mRNA

cytoplasmic mRNA content
Bursts of transcription lead to fluctuating

Nuclear retention of mRNA maintains

active transcription site
inactive transcription site

constant levels of cytoplasmic mRNA

Gck
Glul

(B)(A)

(C)
Mlxipl
Glul

FIGURE 6 Nuclear retention of mRNA can buffer gene expression noise. A, Diagram demonstrating the effect of nuclear retention on

cytoplasmic variability in mRNA content. B,C, mRNA molecules of Gck (red, B) and Mlxipl (red, C) are mainly observed in the nucleus of pancreatic
β-cells whereas Glul (green) is mainly observed in the cytoplasm. DAPI is in blue. Scale bar is 5 μm (B), 20 μm (C)
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labelling with sorting techniques offers additional avenues for the wider

and deeper characterization of such cells.75–77 These new techniques

could expose the design principles that govern gene regulation in β-cells

and other cell types in our metabolic organs.
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