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ScienceDirect
The tissues in our bodies are complex systems composed of

diverse cell types that often interact in highly structured

repeating anatomical units. External gradients of morphogens,

directional blood flow, as well as the secretion and absorption

of materials by cells generate distinct microenvironments at

different tissue coordinates. Such spatial heterogeneity

enables optimized function through division of labor among

cells. Unraveling the design principles that govern this spatial

division of labor requires techniques to quantify the entire

transcriptomes of cells while accounting for their spatial

coordinates. In this review we describe how recent advances in

spatial transcriptomics open the way for tissue-level systems

biology.
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Introduction
The field of Systems Biology has made a profound impact

on our ability to reverse engineer the biological networks

that govern cellular behavior. Fueled by biotechnological

developments over the past two decades, researchers

have been able to obtain a detailed description of regula-

tory, signaling and metabolic networks [1–3]. Remark-

ably, many of these networks exhibited features that were

common to engineered systems, such as modularity,

robustness and recurring building blocks [4]. The tech-

niques used for these studies required ‘bulk’ analyses of

extracts from many cells, be it RNA [5,6], proteins [7] or

chromatin [8]. While highly informative for unicellular

organisms or cultured cells, these techniques provide only

partial information when the biological systems are

heterogeneous.
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The tissues in our bodies consist of diverse cell types and

subpopulations; their molecular identities would be lost

in bulk measurements. Single cell RNA sequencing [9–

13] has revolutionized our ability to identify and charac-

terize such subpopulations. However, these techniques

require tissue dissociation, thus losing the original tissue

coordinates. Since the physical location of a cell within

the tissue is a key determinant of its molecular identity,

tissue-level systems biology requires obtaining whole-

genome measurements while accounting for the spatial

localization of cells. Several methods for spatial transcrip-

tomics have been comprehensively reviewed in [14],

herein we will focus on more recent advances in the field

and their potential use in advancing our understanding of

design principles of tissue organization.

Spatial context is a key determinant of cellular
identity in mammalian tissues
To motivate the importance of spatial transcriptomics,

we will shortly describe open questions in two typical

heterogeneous, yet structured mammalian tissues—the

intestine and the liver. The mammalian small intestine is

lined with a highly folded epithelial sheet composed of

deep pits called crypts, and larger protrusions called villi

(Figure 1). Stem cells and progenitors within the crypt

constantly feed the villus with secretory goblet cells and

absorptive enterocytes. These differentiated cells rapidly

migrate along the villus walls as they operate for a few

days, until they are shed off from the villi tips. The

positions of cells along the crypt villus axis correlate with

their age, making this a classic system to study processes

of cell differentiation, homeostasis, aging and death.

Extensive studies deciphered the homeostatic mecha-

nisms that operate in the crypts to maintain constant

stem cell numbers while ensuring a steady flux of differ-

entiated cells [15–17]. Much less is known about the

diverse processes in the differentiated compartments—

the intestinal villi. How fast do enterocytes mature upon

entering the villi? Do ‘old’ enterocytes at the villi tips

operate less efficiently than ‘young’ enterocytes at

the villi bottoms as a result of accumulated cellular

damage acquired due to the hostile lumen environment

(Figure 1a)? Are there different subtypes of enterocytes

that subspecialize in the absorption of particular nutri-

ents, such as carbohydrates, lipids or amino acids, or are

enterocytes all-absorbing generalists (Figure 1b)? If such

enterocyte division of labor exists is it a result of clonal

subtypes generated in the crypts, or rather a transient

division of labor modulated by the constantly changing
www.sciencedirect.com
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Figure 1
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Open questions in the biology of the intestinal epithelium that require spatially resolved single-cell measurements. This illustration depicts a small

intestinal crypt-villus unit. Each crypt forms a well-protected adult stem cell niche. Stem cells at the bottom of the crypt, intermingled with

supporting Paneth cells, constantly proliferate to generate progenitors, termed ‘transit amplifying cells’. These migrate upwards as they continue

to divide yielding a constant flux of differentiated secretory goblet cells and nutrient absorbing enterocytes that feed the villi. The differentiated

cells migrate upwards along the villi walls as they function for a few days until they are shed off from the villi tops. Several open questions

regarding the collective behavior of this key cell population include: (a) Are ‘old’ enterocytes, that have arrived at the tip of the villus, functionally

different from ‘young’ enterocytes that only recently acquired their differentiated function? (b) Are enterocytes ‘generalists’ that absorb each

nutrient class equally efficiently or are there subspecialized types of enterocytes that preferably absorb carbohydrates, lipids or amino acids? (c) If

such subspecialized enterocytes exist, do they differentiate hierarchically from stem cells and maintain their fate in a stable manner? Alternatively,

the fractions of these subspecialized cells might fluctuate dynamically depending on extrinsic stimuli, for example, the presence or absence of the

respective nutrients. Quantitative measurements of the complete transcriptome of enterocytes at defined coordinates along the villus axis can

address these and other open questions.
nutrient composition in the gut (Figure 1c)? Are there

spatial domains along the vertical villus axis for such

subpopulations that define a hierarchy of absorption?

Tools to characterize the complete cellular gene expres-

sion signatures of enterocytes along the vertical crypt-

villus axis would address these open questions and

unravel how the intestine can economically yet efficiently

absorb nutrients that only exist for transient periods of

time [18].

The mammalian liver is a second example in which the

spatial locations of cells are critical for understanding their
www.sciencedirect.com 
molecular identities and physiological roles. The liver is a

central organ for maintaining organismal homeostasis.

Hepatocytes perform a wealth of biological tasks includ-

ing protein secretion, nutrient storage and release and

detoxification. The hepatocytes that perform these tasks

operate in repeating hexagonal anatomical units termed

‘lobules’. Each lobule consists of around 12–15 concentric

layers of hepatocytes and is polarized by blood that flows

inward from outer portal nodes toward draining central

veins (Figure 2). The absorption and secretion of hepa-

tocytes residing along the radial blood vessels modulates

the microenvironment available for more ‘downstream’
Current Opinion in Biotechnology 2017, 46:126–133
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Figure 2
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Unresolved questions regarding the spatial organization of the liver. The liver is orchestrating anabolism and catabolism of nutrients and

xenobiotics. It is composed of hexagonal lobules that are polarized by blood flow; Blood originates from portal triads at the corners of the lobule

and flows toward a draining central vein. Each portal triad consists of a hepatic artery (red) that carries oxygenated blood, a portal vein (blue) that

conveys nutrient-rich blood from the gastrointestinal tract and a bile duct (green). Gray arrows indicate directions of flow, yellow arrows indicate

exchange of materials between hepatocytes and blood, green arrows mark bile canaliculi. Various metabolic tasks are spatially distributed in

specialized sublobular layers between the central vein and the portal field, an organization termed ‘liver zonation’. Where along the radial lobule

axis is each liver function localized? What are the optimality principles governing this spatial division of labor? Are there spatially distributed

metabolic cycles in which pathway intermediates are transferred among sequential cells? Spatially resolved transcriptomics of the liver could

facilitate detailed understanding of this fundamental organ.
hepatocytes, creating a fertile ground for tissue optimi-

zation. For example, excessive respiration or nutrient

consumption of portal hepatocytes could potentially

deplete these inputs to levels that could dangerously

compromise the function of central hepatocytes. Indeed,

hepatocytes at different lobule layers subspecialize in

different tasks in a way that is thought to facilitate optimal

overall liver function. For example, the outer highly

oxygenated portal layers of the lobules subspecialize in

energy demanding tasks such as protein secretion and

glucose production, whereas central hepatocytes special-

ize in detoxification [19,20]. Obtaining the complete gene
Current Opinion in Biotechnology 2017, 46:126–133 
expression signatures of individual hepatocytes at all

lobule coordinates would unravel the design principles

underlying this spatial division of labor and facilitate

detailed modeling of the liver response to diverse

perturbations.

In situ spatial transcriptomics
The age of spatial transcriptomics can be traced back to

the development of single molecule fluorescence in situ
hybridization (smFISH) methods [21,22]. smFISH

enables transcript quantification in situ (at the tissue site

where they reside) by making use of libraries of multiple
www.sciencedirect.com
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short, 20 bp long olignonucleotide probes, each labeled

with typically a single fluorophore (Figure 3a1). Through

thespecific accumulation of these fluorescentprobeson the

target mRNA, individual transcripts can be visualized as

diffraction-limited spots by fluorescence microscopy [22].

smFISH has been applied in cells as well as in mammalian

tissues [23], where it enabled characterization of cell sub-

populations and spatial heterogeneity [24–26].

An outstanding limitation of smFISH is the small number

of transcripts that can simultaneously be identified, typi-

cally three or four. This is due to the limited number of

fluorophores that are suitable for parallel use. An elegant

approach to overcome this limitation uses combinatorial

labeling. Levsky et al. [27�] were the first to demonstrate

combinatorial labeling for single transcript detection. By

dividing the library of probes into groups, each coupled to

one of three fluorophores, they could differentiate

between dots that have single colors, pairs of colors or

triplets. This approach increased the number of tran-

scripts that could be detected with n fluorophores to

2n-1. Lubeck and Cai further increased the number of

simultaneously detected transcripts by combining spatial

barcodes with super resolution microscopy [28��]. With

the higher resolution of 10–20 nm they were able to

resolve different physical subparts of the mRNA mole-

cules of interest (Figure 3a2). In this way the transcripts of

two different genes combinatorially labeled with three

colors could be resolved if one uses a sequence of probes

coupled to red, blue and green, whereas the other uses a

sequence of blue, red and green. An additional factor that

increased the number of simultaneously detected genes

was the use of seven photoswitchable dye pairs, as com-

pared to the four fluorescent dyes typically detected in

smFISH experiments.

An alternative method for combinatorial smFISH uses

the temporal dimension to multiplex probe libraries. Cai

and colleagues generated four different versions of a

smFISH probe library, each with an identical probe set

[29]. Each library was coupled to one of four fluorophores.

During each hybridization round only one of the four

libraries was utilized, and DNAse treatements removed

bound probes between hybridization rounds (Figure 3a3).

The recorded sequence of probe signals enabled the

identification of the detected RNA species based on

the temporal sequence of dots. In theory, this approach

allows for the detection of Fn distinct transcripts

(F = fluorophores, n = hybridiaztion rounds) [29]. For

example, with four fluorophores and eight hybridization

rounds one could identify 65 536 different transcripts.

However, this approach would currently be prohibitively

expensive if applied transcriptome-wide.

A pending issue with combinatorial smFISH is the

robustness to readout errors. Since probe hybridization

is an inherently stochastic process, one could erroneously
www.sciencedirect.com 
assign an RNA species to the wrong gene if one of the

sequential hybridizations failed. This readout error

increases exponentially with the number of hybridization

rounds. To overcome this, Chen et al. developed an

elegant barcode assignment scheme termed ‘MERFISH’,

which ensures that the sequence of barcodes for different

genes is far enough so that only multiple readout errors

would cause miss-assignments [30��,31]. In addition, both

the cost of fluorescent probe synthesis and time-consum-

ing hybridization rounds were addressed by MERFISH

through a clever two-stage hybridization scheme

(Figure 3a4), leading to the accurate detection of

1000 transcripts with 14 hybridization rounds in 100 cells

[30��]. A recent improvement of MERFISH enabled the

detection of 130 genes in 40 000 cells in one 18 hours

experiment [32]. These proof-of concept studies for

combinatorial smFISH were applied to cultured single

cells. It remains to be seen how well the methods will

perform in tissue sections. This could be particularly

challenging since tissues have an inherently larger read-

out noise due to increased auto-fluorescence.

In-situ sequencing
While combinatorial methods have dramatically

increased the throughput of in-situ transcript detection,

they are still targeted approaches, requiring pre-selecting

genes of interest for which probes are designed. In-situ
sequencing is a complementary technique that enables an

unbiased census of all RNA molecules while preserving

localization. High-throughput sequencing reconstructs

the sequence of cDNA molecules tethered to a flow cell

by sequential synthesis with fluorescent nucleotides. In
situ RNA sequencing in essence replaces the flow cell

with the original tissue of interest (Figure 3b). It utilizes

in situ cDNA synthesis, cDNA amplification and cross-

linking [33,34��,35]. The resulting circular cDNA ampli-

cons are amenable to SOLID sequencing by ligation;

four-color microscopy records the SOLID base informa-

tion for each pixel, the fluorophore is inactivated and the

sequencing reaction is repeated for the next base. Nilsson

and colleagues introduced targeted in situ RNA sequencing

by making use of padlock probes to initiate targeted cDNA

synthesis in situ [33]. They sequenced four base-pair frag-

ments and detected 31 different transcripts in parallel in

fixed tissue sections. Lee et al. further developed fluores-

cent in situ RNA sequencing (FISSEQ) by generating

150 000 short 30 bp reads that were mapped to 8100 genes

in fibroblasts [34��]. They also demonstrated the in situ
cDNA library generation in intact tissues, such as drosoph-

ila embryos and mouse brain sections. Some inconsisten-

cies in the correlations between FISSEQ reads and tradi-

tional RNAseq remain to be further explored [35].

A recent promising in-situ sequencing method was devel-

oped by Stahl et al. They used a glass slide that spatially

captures mRNA for library assembly when overlaid with a

tissue section [36�]. Each polyA-capturing feature
Current Opinion in Biotechnology 2017, 46:126–133
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Figure 3
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Methods for spatial transcriptomics. (a) In situ hybridization methods. 1) single molecule RNA fluorescence in situ hybridization enables identifying

individual transcripts as fluorescent dots, by making use of libraries of multiple 20 bp long olignonucleotide probes, each labeled with a single

fluorophore. 2) The use of super resolution microscopy in combination with smFISH stainings enables the identification of fluorophore sequences

along single transcripts [28��]. Multiple transcripts can be identified by making use of differing fluorophore orders. 3) Temporal barcoding is based

on sequential hybridizations and imaging steps that are followed by the digestion of the imaged probe olignonucleotides. Subsequent reactions

make use of probe sets that are labeled with differing fluorophores, the resulting temporal barcode of fluorophores for each smFISH dot enable

the identification of multiple transcripts [29]. 4) The MERFISH approach makes use of a two-stage hybridization scheme [30��,31,32]. Encoding

probes are hybridized to RNA molecules in situ, these probes encompass landing sequences for the rapid subsequent assembly of fluorescent

readout probes. The fluorescent dyes that are coupled to the readout probes can be deactivated chemically and allow for the repeated

hybridization cycles with different readout probes. The rapid hybridization cycle duration of this protocol allows for a sophisticated barcode

assignment scheme that requires four readout errors for barcode miss-assignments; single errors can be unequivocally corrected. (b) Fluorescent

in situ sequencing (FISSEQ) [34��,35]. 1) mRNA molecules are reverse-transcribed in situ and circularized. 2) Resulting cDNA molecules are

amplified with rolling circle amplification. Cross-linking of modified cDNA residues prevents diffusion of the resulting amplicons. 3) Repeated

sequencing reactions by ligation and subsequent microscopic imaging and fluorophore cleavage yield a nucleotide sequence for each imaged

pixel; sequences that are retrieved from RNA molecules can be mapped to a reference transcriptome while background fluorescence is not

retrieved. (c) Spatial mRNA capture slide [36�]. 1) Commercially available mRNA capturing slides incorporate polyT-nucleotides with embedded

positional barcodes. 2) Tissue sections are permeabilized and mRNA molecules are captured by the polyT-nucleotides of the glass slide. 3)

Captured mRNA molecules are eluted from the glass slide and feature a positional barcode. Subsequent library preparation and massively parallel

sequencing enables the retrieval of the corresponding positional barcode and originating tissue coordinates for each resulting library. (d)

Reference map-based single cell RNA sequencing. 1) Spatial expression patterns of landmark genes are mapped in two or three dimensional

space within the intact tissue. 2) In parallel, the tissue of interest is dissociated into single cells; these cells are profiled in depth by scRNAseq

[41��,42��,43,44,45��] or single cell qPCR [40]. 3) The expression levels of the landmark genes that were used for the assembly of positional tissue

maps in 1) are retrieved for all sequenced single cells. 4) The original position of the sequenced single cells is inferred based on their expression

levels of all marker genes. This consequently enables identifying the spatial domain of expression of any gene of interest.

Current Opinion in Biotechnology 2017, 46:126–133 www.sciencedirect.com
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consists of a positional barcode, unique molecular identi-

fier (UMI), and library adaptor sequences (Figure 3c).

RNA is eluted and cDNA synthesis and library prepara-

tion are performed in bulk reactions for the whole slide.

Importantly, spatial information is preserved by the posi-

tional barcodes. This results in a considerably simpler

workflow compared to FISSEQ and sequential FISH.

The method currently utilizes 1000 capture features of

100 mm diameter, spread across a 6 � 6 mm area. It is a

promising approach that could enable non-specialized

laboratories to robustly perform spatial transcriptomics

in tissues, albeit with a currently low resolution and

spatial coverage.

Both sequential FISH and FISSEQ methods suffer from

densities of labeled transcripts that surpass the resolution

capacity of the optical system. Because of the diffraction

limit of �0.3um, a typical mammalian cell with a diameter

of 10 mm would only contain on the order of 104 ‘pixels’.

Since there are around 106 mRNA molecules per cell,

each pixel thus contains about 100 mRNA molecules,

rendering efficient optical detection impossible. To over-

come this limitation Coskun and Cai have applied local

image correlation patterns to quantify highly abundant

transcripts with conventional fluorescence microscopy in

both cultured single cells and tissue sections [37]. An

alternative approach to saturated transcript density con-

sists of tissue expansion. Expansion FISH (ExFISH)

links RNA molecules to a swellable gel and enables

effectively super resolution RNA imaging with diffrac-

tion-limited microscopes in thick tissues [38�]. The com-

bination of ExFISH with self-amplifying smFISH probes

[39] led to bright dots in thick tissues that can be rapidly

acquired with lightsheet microscopy [38�].

Combination of single cell RNA sequencing
with tissue reference maps
A complementary approach for obtaining spatial tran-

scriptomics is to infer the tissue coordinate from the

single cell expression patterns of dissociated tissues

(Figure 3d). Single cell RNA sequencing (scRNAseq)

methods generate simultaneous gene expression data of

thousands of cells [9–13]. A given cell’s positional origin

within the tissue of interest is lost, however, during the

dissociation process. Several laboratories have utilized

pre-established tissue reference maps, which consist of

the spatial expression patterns of a selected subset of

marker genes, to infer the positional information of cells

in the scRNAseq data (Figure 3d). The laboratory of

Stefan Heller generated single cell qRT-PCR data of

several hundred sorted otocyst cells [40]. Subsequently

they used expression patterns of a few genes that were

previously mapped out using RNA in-situ hybridization,

to establish a three-dimensional model of the otocyst in the

shape of a sphere. This elegant approach enabled mapping

the single cell expression dataset back to its positional

origin by using 3D principal component analysis [40].
www.sciencedirect.com 
Ensuing studies generated in situ maps and used them to

infer the position of scRNAseq data in the zebrafish embryo

[41��], the developing brain of a bristle worm [42��], and

gastrulating mouse embryos [43,44].

A recent study combined scRNAseq with tissue reference

maps that were generated with smFISH to reconstruct

the global spatial expression profiles along the mamma-

lian liver lobule [45��]. The higher precision and dynamic

range of smFISH, compared to traditional in-situ hybrid-

ization techniques enables precise spatial inference with

significantly smaller number of marker genes. The use of

smFISH to create tissue reference maps becomes critical

in tissues where genes are expressed in a graded, rather

than in a binary manner. The tissue reference map-based

methods combine the advantages of two worlds: the

ability of sequencing methods to perform deep unbiased

profiling of large amounts of single cells and preservation

of positional information of in situ methods. Central to

these methods are sophisticated algorithms for inferring

the positional information while accounting for different

experimental sources of variability.

Theory and outlook
The diverse methods for spatial transcriptomics are

expected to generate highly detailed maps of single cell

gene expression at any tissue coordinate. As with other

previous revolutions in systems biology we expect a parallel

development of theoretical frameworks to integrate these

measurements and identify tissue design principles. One

central goal of mammalian systems biology is to understand

a tissue’s metabolic response to diverse inputs. Large-scale

reconstructions of liver metabolic networks [46] enable

simulating such responses, however these networks model

the liver as a homogenous well-mixed pool of cells. Given

the intricate spatial division of labor along the liver lobule

radial axis there is a need to develop metabolic modeling

approaches that will consist of connected cellular subnet-

works, which exchange substrates and products [47–49].

Key to the success of these methods is an integration of the

single cell spatial measurements with advanced tissue

imaging techniques to define the interactions between

the relevant tissue cellular components [50,51].

A second avenue to explore is the modeling of how cell

circuits achieve tissue homeostasis. Interactions between

cells in a tissue, through juxtacrine and paracrine signal-

ing, are crucial for tuning overall tissue function and for

maintaining homeostatic balance of biomass. Theoretical

works that analyze the performance of diverse cell circuits

will be instrumental to understanding how cells in tissues

jointly achieve physiological goals [52–55]. Another excit-

ing theoretical avenue is the analysis of the conditions

when division of labor among cells is more optimal for

organ function compared to homogenous tissues with

generalist cells. This question has analogies in ecology,

economics and engineering, for example, the mathematical
Current Opinion in Biotechnology 2017, 46:126–133
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analysis of castes systems in social insect colonies [56], and

the theory of pareto optimality [57,58]. The astonishing

speed of current developments in imaging and sequencing

technologies promises better resolution, better transcrip-

tome coverage and cheaper assays in the near future.

Integrating this flood of high quality data with theory

will dramatically advance the field of tissue systems biology

and could expose the underlying principles of tissue

organization.
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