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Population mixture model for nonlinear telomere dynamics
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Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually
leading to cessation of cell growth. We present a population mixture model that predicts an exponential
decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution.
The model provides an excellent fit to available telomere data and accounts for the previously unexplained
observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight

into the nature of the telomere clock.
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Telomeres are regions of repetitive DNA sequences at the
ends of linear chromosomes that protect them from attrition.
The telomere length decreases with each cell division in
most cells, eventually signaling cells to stop growing (a state
termed “cellular senescence” [1]). Thus telomeres serve as
internal clocks for cells, effectively counting the number of
cell divisions. The nature of telomere length dynamics is
relevant to understanding tissue maintenance, aging, and
cancer [2].

In tissue culture, the telomere length of cells decreases
linearly with the number of cell divisions [1,3,4]. However,
in vivo, the dynamics of the average telomere length is more
complex—a rapid drop in the first few years of life is fol-
lowed by a more gradual decrease [5-10]. Most existing
mathematical models of in vivo telomere shortening either do
not account for this nonlinearity [11] or attribute it to a
changing cell division rate of stem cells [8—10], experimental
evidence for which is still lacking [12].

Here we show that telomere nonlinear dynamics can arise
if cell populations are not homogeneous, but rather consist of
a mixture of pools with different dynamical properties. Our
model posits two pools of cells—a repopulating pool of C,
cells, which consists of either stem cells or a subpopulation
of stem cells, and a derived pool of C>C, cells (Fig. 1). A
similar model has been used to describe telomere length dif-
ferences between naive and memory T cells [13]. We assume
that the telomere length in the repopulating pool remains
constant throughout time, either as a result of infrequent di-
visions or through the activity of mechanisms which pre-
serve telomere length (e.g., telomerase activity [14-16]). In
contrast, the telomere length in cells of the derived pool re-
duces by a constant fraction of A base pairs per cell division.

At any time point a derived cell has a constant rate M of
dividing and a constant rate D of dying, which is indepen-
dent of the cell’s telomere length [11]. In addition, at each
time point with a rate M,<M repopulating cells undergo
asymmetric divisions, giving rise to one daughter cell which
stays in the repopulating pool and another which undergoes
rapid clonal expansion and whose progeny transfer to the
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derived pool [2] (Fig. 1). Thus there is a constant influx of
a=fM,C, cells per time into the derived pool, where f is the
clonal expansion factor [13].

We define the age of a derived cell as the number of
telomere shortening divisions it has undergone since it trans-
ferred from the repopulating pool. The relation between the
average telomere length in the derived pool and the average
age (1) is

L) = Ly — Ai(D), (1)

where L, is the initial telomere length, assumed identical for
all repopulating cells. A division of a cell of age i—1 results
in one less cell of age i—1 and two additional daughter cells
at age i. This occurs at a rate of M per time per cell. There-
fore the change over time in the number of cells of age i,
N(i,1), is

dN(i,t

# =2MN(i—1,t)— (M + D)N(i,1), i>0,
Repopulating pool Derived pool

(C, cells) (Ccells)

FIG. 1.
telomere length, or number of divisions in the derived pool (light
colors, low number of divisions; dark colors, high number of divi-
sions). Dotted line cells will not be present in the next time point.

Population mixture model. Circle shades denote
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FIG. 2. Distribution of telomere lengths. Each row represents
the distribution at different times. M=0.1/week, C=10000 cells.
(a) =130 cells/week (half steady state is reached after 53 weeks).
(b) Reduced repopulation rate, a=13 cells/week (half steady state
reached after 533 weeks).

dN(0,1)

b (M + D)N(0,1),

i=0, (2)

where « is the influx of cells of age 0 from the repopulating
pool. Assuming that the total number of derived cells
C=X7,N(i,1) is constant (we relax this assumption below)
and using Eq. (2) we obtain

dc d <
—=0=—XN(i,)=a-(D-M)C=D=M+a’,
dt dti5

3)

where @’=a/C. Thus cell death in the derived pool is bal-
anced by cell division in the derived pool and by an influx of
repopulating cells. The master equation [17] for the distribu-
tion of cells at age i and time 7, P(i,t)=N(i,1)/C, is

dP(i,t)

i =2MP(i-1,t1) = (M + D)P(i,1),

i>0,

dP(i,1) B

Ul a' —(M+D)P(i,1),

i=0. 4)

The dynamics of telomere shortening in the derived pool
gives rise to a distribution of telomere lengths which changes
with time (Fig. 2). Using the generating function [18-20]
F(x,1)=27P(i,t)x" and Eq. (4) yields

F(x,1) ~ dP(it)
()C, ) — 2 dP(l’t)xt
ot o dt
=a'—(M+D)P(0,1)

+2M > P(i—1,0x' = (M + D), P(i,H)x'

i=1 i=1

=a' —(M+D)D P(i,)x' +2Mx>, P(i,)x'
i=0 i=0
=a' +[2Mx— (D + M)]F(x,1). (5)

Differentiating (5) with respect to x, substituting x=1, and
using i(t)= dF(x,t)/dx|,-; and F(1,t)=1 yields
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FIG. 3. Population mixture model predicts an exponential de-
cline in average telomere length with time. (a) The average number
of divisions of derived cells (cell age) increases nonlinearly with
time. (b) Average telomere length decreases exponentially with
time. (c¢) The coefficient of variance of the number of divisions of
derived cells decreases first and then approaches a steady state ex-
ceeding 1. Solid line, theoretical cv; decreasing dashed line, short-
time Poisson limit. (d) Different behaviors of telomere dynamics in
response to stress. The death rate D was increased by 25% between
time points 60 and 120. The solid curve shows the dynamics with-
out perturbation, the dashed curve shows compensation through an
increased repopulation rate (a’ ~D), and the dash-dotted curve
shows compensation through an increased derived cell division rate
(M ~ D). Curves obtained by analytical solution of Eq. (7) with the
parameters of Fig. 2(a).

di(t) 9 OF(x.1)
dt — ox o

=2M+ M -D)i(t),  (6)

x=1

with the solution [Fig. 3(a)]

2M /

=1 = 20 oy, ()

where we have used Eq. (3)—namely, that D-M=a'
Using Egs. (1) and (7) the average telomere length is

L0 =Lo- 221 - ). ®
o

Thus the average telomere length decreases exponentially
with a typical half time of 7;,=In(2)/a’ toward a steady-
state level of Ly—2MA/a’' [Fig. 3(b)]. At the limit of T
< 7y, where T is the relevant time of observation—e.g., the
organism life span—Eq. (8) reduces to a linear decrease in
average telomere length, L(¢#)=Ly—2MAt. This limit repre-
sents a single pool of cells, such as in tissue culture.

The distribution variance v(f) can be obtained by differ-
entiating Eq. (5) twice with respect to x and setting x=1:
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nential decrease in telomere
lengths with age fits experimental
data. Telomere length data for
granulocytes (left, black), T cells
(middle, red), and B cells (right,
green) of three baboons were
taken from [7]. Solid curves,
model exponential fit. Dashed
curves, linear fit. Except for
granulocytes in S18760 the expo-
nential fit provided a substantially
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eters used.
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, M? / sM*t To validate the model prediction of an exponential de-
v(r) = 7(1 —e ")+ 7(1 —e7) ~ o e (9) crease in average telomere length with time, we used a pub-
lished database of longitudinal leukocyte telomere length
measurements in baboons at different ages [7]. We find that
the exponential model fits the observed data much better than
a linear decline in telomere length with age (Fig. 4). The
median least-squares error of the exponential fit was 63% of
that for the linear fit. The typical half time (In(2)/a’) of
telomere reduction is approximately 50 weeks. Assuming a
telomere decrease of 120 BPs per division [22] the fit for M
predicts a division once every 5 weeks for granulocytes,

At short times after birth the coefficient of variance
(cv=\v/(i(r))) behaves similarly to that of a Poisson distri-
bution (cv=1/1i(z). At later times the distribution width in-
creases to approach v1+a'/2M [Fig. 3(c)].

Using Eq. (5), the steady-state value of F is Fy=a'/
(M +D-2Mx); thus, the steady-state distribution is geomet-
ric with parameter o'/ (M +D):

1 JF once every 3 weeks for T cells, and once every 8 weeks for
pli)y, = ,—'—j’ B cells (Table I).
it ax {0 Our model yields the same analytical solution if we as-
o ( M )i sume that the number of cells increases exponentially with a
(M+D)\M+D TABLE 1. Parameter fits for the baboon data. Numbers in pa-
o o i rentheses are standard errors in the last digit.
B I
(M+D)\ (M+D) ' (1/week) MA (BP/week)
while as at the steady state the distribution is highly skewed Granulocytes 0.013(2) 23(5)
[Fig. 2(a)], at earlier times when «’ <1/T, where T is the T cells 0.014(3) 41(8)
relevant observation time, the distribution is much more nar- B cells 0.013(2) 16(1)

row [Fig. 2(b)], as previously observed in cultured cells [21].
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constant rate y= %% in both pools rather than being con-

stant, as observed in childhood [23]. The equations for the
distribution moments and steady state remain the same with
D replaced by D+y.

In cases of increased cell death D due to physiological
perturbations, compensation can occur either by increasing
M, yielding a more rapid decrease in average telomere length
[24], or in a, yielding an increase in the average telomere
length [Fig. 3(d)]. The latter mechanism may account for the
surprising findings of telomere elongation in T cells of HIV
patients [25,26] and in some patients following bone marrow
transplantation [27,28]. After removal of stress the model
predicts a return to the original steady state, Ly—2MA/a’.

The present model can be readily generalized to address
more complex aspects of telomere dynamics such as regula-
tion of the telomere length per cell division by telomerase,
possible regulation of cell turn-over rates, the accumulation
of senescent cells once telomere length crosses a critical
threshold and the population dynamics of the repopulating
pool. This, however, is beyond the scope of the present work.

In summary, we presented a model which explains how
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linear telomere dynamics at the single-cell level can give rise
to exponential dynamics at the population level. The model
assumes the existence of a repopulating pool of cells with
telomeres of constant length and a derived pool of cells with
telomere length decreasing linearly with the number of divi-
sions. The model fits available longitudinal data, predicts a
wide distribution of telomere lengths in vivo, and explains
cases in which average telomere length increases following
stress. The model facilitates inferring the existence of stem-
cell populations and estimating implicit population param-
eters, such as division and repopulation rates. It will be in-
teresting to apply the present model to human longitudinal
data of telomere length and to extend the approach to the
analysis of other dynamic biological attributes of cell
populations.
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