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Western harmony is comprised of sequences of chords, which obey grammatical rules.
It is of interest to develop a compact representation of the harmonic movement of
chord sequences. Here, we apply an approach from analysis of complex networks, known
as “network motifs” to define repeating dynamical patterns in musical harmony. We
describe each piece as a graph, where the nodes are chords and the directed edges con-
nect chords which occur consecutively in the piece. We detect several patterns, each of
which is a walk on this graph, which recur in diverse musical pieces from the Baroque
to modern-day popular music. These patterns include cycles of three or four nodes, with
up to two mutual edges (edges that point in both directions). Cliques and patterns with
more than two mutual edges are rare. Some of these universal patterns of harmony are
well known and correspond to basic principles of music theory such as hierarchy and
directionality. This approach can be extended to search for recurring patterns in other
musical components and to study other dynamical systems that can be represented as
walks on graphs.

Keywords: Network motifs; music complexity; music perception; complex networks;
design principles; graph theory.

1. Introduction

Tonal harmony is the harmonic system that has predominated classical music from
the mid-17th century to the turn of the 20th century, as well as most popular
Western music in the last century. Tonal music is characterized by a hierarchy of
chords [6, 15, 39]. The tonic, which is the chord built on the first tone (marked I), is
the most important, followed by the chords built on the fourth (the subdominant-
IV) and fifth (dominant-V) tones. Musical harmony usually consists of a progression
of chords obeying grammatical rules.

Classical theories of musical harmony [20,29,32,33] have identified several
widely used chord progressions in tonal harmony, and have characterized the

121



122 S. Itzkowitz et al.

probabilities of different types of chord transitions. More recently, several stud-
ies presented automated algorithms for the detection of patterns of harmony
[3,7,9,14,16, 21, 22], mostly using string-matching algorithms. These approaches
readily detected recurring patterns of chords. Several works have tried to capture the
grammatical structure of tonal harmony by applying statistical tools used in natural
language processing, such as N-grams and Markov models [26, 28, 36]. These statis-
tical representations of harmonical patterns have found use in automatic retrieval
of music and characterization of different musical styles. These methods usually
rely on the identities of chords and their sequential relations.

Here, we seek to define a compact set of patterns which represent the basic
dynamical movements of harmonic progression. Our method is based on a recent
methodology for analyzing complex networks in terms of recurring building blocks
termed network motifs. We describe a musical piece as a walk on a graph of chords,
in which edges connect two chords appearing consecutively in a piece. We then
detect the dynamical patterns of chord transitions — the subgraphs traced out by
the piece as it traverses a variable length sequence composed of a set of chords.
Unlike previous approaches, this method decouples the chord identities from the
dynamical progression and focuses only on the type of dynamical pattern displayed
by the chord transitions in the piece. We compare the dynamical patterns to pat-
terns obtained in a set of randomized pieces and define the over-represented pat-
terns as dynamical motifs. We find several highly significant recurring patterns that
occur much more often in musical pieces than expected at random. Some of the pat-
terns correspond to well-known progressions or to principles of composition such as
directionality and hierarchy.

2. Network Motifs

Complex interaction networks [1, 2,19, 25, 37] have recently been shown to contain
recurring patterns that are highly significant compared to randomized networks
[23,24, 34]. These patterns are called network motifs. In biological regulation net-
works, in which nodes are proteins and edges represent the interactions between
them, each of the motifs has been shown theoretically [17,34] and experimentally
[18, 30, 31, 40] to perform a specific information-processing function. Generally, dif-
ferent types of networks show different motifs, and networks can be classified into
super-families according to their network motif profiles [23]. The motifs can be
used as coarse-graining units to form a compact representation of the network [13].
Here, we ask whether this approach can be extended to detect meaningful patterns
in musical harmony.

3. Dynamical Motifs in Musical Harmony

Each musical piece is represented by its chord sequence [Fig. 1(a)]. Major, minor,
diminished, half-diminished and augmented chords are distinguished in the chord
sequence whereas added notes and inversions are ignored (A and Am were regarded
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Fig. 1. (a) Chord sequence in a segment of Mozart sonata in A minor KV 310, movement I [38].
The chord sequence of this segment of the piece CGCGCDmGCFCGC includes two three-node
patterns: (b) CGCGCDmGC and (¢) GCFCGC. For (b) and (c), the chord sequences which form

the three-node patterns are underlined and shown in black on the chord graph. Dynamical patterns
were weighted (W) based on the length of their chord sequence.

as separate chords, while A, A6 and A/C were all considered A). The piece is then
represented as a directed graph [Figs. 1(b) and (c)]. Each node represents a chord
and a directed edge appears between chord X and chord Y if Y directly follows X
in the chord sequence. The musical piece can thus be represented as a walk on this
graph. We consider all sub-walks of this walk that visit n nodes. We do not count
sub-walks which are included within a larger sub-walk with the same nodes. (In
graph-theoretical terms, we enumerate all n-node edge-complete walks [12].) Each
sub-walk traces out a pattern of nodes and edges that we term a dynamical pattern
(see Table 1 for examples of 3-5 node dynamical patterns). Dynamical patterns
are directed subgraphs that can be drawn, with the correct edge directionality, in a
single motion without lifting the pen. There are eight possible types of topologically
distinct 3-node dynamical patterns, 109 4-node dynamical patterns, 5,702 5-node
dynamical patterns, etc. Each dynamical pattern is assigned a weight that is equal
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Table 1. Consensus motifs and their frequency (numbers and percents of pieces in which they
are motifs) in the analyzed database. Shown are all the three-node consensus motifs, as well as
4-node and 5-node consensus motifs with no dangling edges. Patterns 4 and 7 are motifs in many
20th century popular pieces, but are not found as motifs in classical pieces.

Percent of Number of 20th

classical pieces century popular Percent of all

Pattern # Pattern (75) pieces (484) pieces (559)
1 QP 4 (5%) 36 (7%) 40 (7%)
2 3P 8 (11%) 31 (6%) 39 (7%)
3 e 4 (5%) 36 (7%) 40 (7%)
4 wd 1 (1%) 51 (11%) 52 (9%)
5 O{? 4 (5%) 44 (9%) 48 (9%)
6 ‘{;}O 7 (9%) 53 (11%) 60 (11%)
7 m 1(1%) 47 (10%) 48 (9%)
8 ; f 13 (17%) 30 (6%) 43 (8%)
9 {:} 3 (4%) 8 (2%) 11 (2%)
10 giz 6 (9%) 27 (6%) 33 (6%)
1 EZE 3 (4%) 9 (2%) 12 (2%)
12 @ 3 (4%) 10 (2%) 13 (2%)
13 @ 2 (3%) 11 (2%) 13 (2%)

to the total length of the walks that the musical piece performs along the pattern
[Figs. 1(b) and (c)].

The present method detects patterns of variable length with the same inherent
topology. For example, CGC, CGCG, CGCGC, etc., where CGC represents the
chord sequence C major — G major — C major, all share the dynamical pattern
X «—— Y. The method thus focuses on the pattern rather then on the identity
of each node. For example, both CFGC and CGFC are realizations of the same
dynamical pattern X — Y — Z — X. Each pattern is further given a weight,
defined as the length of the chord sequence that corresponds to the pattern. For
example, the three short chord sequences CGC, CGCG, CGCGC all correspond to
the pattern X «—— Y with weights 3,4, 5, respectively.

Dynamical patterns and weights can be readily detected within musical
pieces. Consider the example in Fig. 1, a section from the first movement
of Mozart’s sonata in A minor KV310. The annotated chord sequence is:
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C,G,C,G,C,Dm,G,C,F,C,G,C. This piece contains two dynamical patterns
made of three chords (nodes). The first dynamical pattern corresponds to the
chord sequence C, G, C, G, C,Dm, G, C. The pattern traced out by this sequence is
a 3-node cycle with one mutual edge [Fig. 1(b), pattern 5 in Table 1]. This dynam-
ical pattern is assigned a weight of 8, the length of the chord sequence tracing it.
The second dynamical pattern is composed of the chord sequence G, C,F,C, G, C.
The pattern traced out by this sequence is a chain of two mutual edges [Fig. 1(c),
pattern 3 in Table 1], and is assigned a weight of 6.

To detect which dynamical patterns are “significant” , we compared each piece to
an ensemble of randomized pieces, composed of random permutations of the chord
sequence of the entire piece. In both the real and in each randomized piece, each
dynamical pattern was assigned a total weight which is the sum of the weights of all
its appearances in the piece. The statistical significance of a pattern was measured
using a Z-score:

7, = Wreal = Wrana

7 )
Orand

where W | is the total weight of dynamical pattern i in the real piece, and Wriand
and o', , are the mean and standard deviation of the total weights of dynamical
pattern i in the randomized pieces. Dynamical motifs are those dynamical patterns
that occur in the real piece much more often than in the randomized ensemble
(Z-score threshold was adjusted using a Bonferroni correction method for multiple
hypotheses testing: Z-score > 2.5 for three-node patterns, Z-score > 3 for four-node
patterns, and Z-score >4 for five-node patterns).

We assembled a database of 559 pieces, including 75 classical pieces and
484 popular 20th century pieces for which chord annotation was available. The
classical pieces include compositions from the Baroque to the Romantic eras
[4,5,10,11,27,38]. The popular pieces [41] encompass works by the Beatles
(130 songs), Rolling Stones (119 songs), Bob Dylan (118 songs), Simon and
Garfunkel (21 songs), Elvis Presley (23 songs), Willie Nelson (30 songs) and Johnny
Cash (43 songs). We searched for motifs of size 3-5 nodes.

We found that most of the pieces (60%) displayed a small set of highly significant
dynamical motifs. We then sought to find motifs that are shared by many pieces.
We term such motifs consensus motifs (Table 1 and Fig. 3). To define consensus
motifs, we considered the number of pieces in which dynamical pattern i appears
as a motif as a random variable X;. To create a distribution P(X;) for this vari-
able, we constructed 50 databases of randomized pieces. Each database consisted of
559 pieces, where each piece was a random permutation of the corresponding orig-
inal piece. We then searched for motifs in all pieces in each database. A dynamical
pattern was considered a consensus motif if: P(X; > N;) < 0.05, where N; is the
number of pieces in which the pattern appeared as a motif in the database of real
(non-randomized) pieces.
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4. Musical Meaning of Consensus Motifs

We found several highly significant consensus motifs, shared by many pieces
throughout all periods. The consensus motifs of size 3-5 are shown in Table 1.
Notable motifs include cycles (patterns 4,7 in Table 1) and cycles with one
mutual edge (patterns 5,8,9,11,12 in Table 1). Two three-node patterns, the clique
(X ——=Y,X «— Z,Y «—— Z) and a mutual edge preceded by an edge (X — Y,
Y «—— Z) are not consensus motifs.

After identifying each consensus motif, we analyzed which chords take part in
the motif. One of the most significant consensus motifs (48,/559 pieces) consists of a
three-chord cycle involving one mutual edge X «—— Y, Y — Z, Z — X (pattern 5,
Table 1, Figs. 1(b) and 2). In classical pieces, the mutual edge in this motif often
represents a I-V-I transition, followed by a I-1I-V-I cycle (as in Mozart sonata
in A minor KV310, Fig. 1) or a I-TV-V-TI cycle. In 20th century popular pieces,
this motif often represents the 12-bar blues progression: I(x4)-IV(x2)-I(x2)-V-
IV-I(x2) (Fig. 2). Examples for this motif include Elvis’ “Blue suede shoes” and
Bill Haley’s “Rock around the clock” (Fig. 2).

Generalizations of this pattern to a larger number of nodes are also common
motifs throughout the music we analyzed. For example, four- and five-node cycles
with one mutual edge (the mutual edge often corresponding to a I-V-I or I-IV-I
progression) are both consensus motifs (Table 1, patterns 8 and 9, Fig. 3, squares).
The mutual edge in these motifs usually acts to establish the tonic (I) as the pro-
gression’s goal, through its relationship to the dominant V or subdominant I'V chord
[38]. Pattern 8 appears in 11/13 classical pieces as the progression: I-V-I-VI-II-
V-1, whereas in popular pieces the chord progressions of this pattern are more
varied.

An additional significant consensus motif (pattern 3 of Table 1, 40/559 pieces) is
a chain of two mutual edges. This often involves a I-V-I-IV-I progression. Thus, it
includes the three most important chords in the tonal hierarchy, and has a pleasing
symmetry due to the fact that it has equal tonal spacing of a fifth between both

(1) We're gonna @) rock around the clock
- tonight, We're gonna
(3) rock rock rock till broad

day light, We're gonna (5) round the clock to-

®) night 6 &
(@

(4) rock gonna rock a-

Fig. 2. An example of the 12-bar blues motif in the song “Rock around the clock” by Bill Haley.
Circled numbers indicate consecutive lyric lines.
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Fig. 3. Consensus motifs found in classical and 20th century popular pieces. Squares mark pat-
terns made of a single cycle with one mutual edge. Five-node consensus motifs with dangling single
edges are not shown.

-V and IV-I. An additional pattern, with two mutual edges and a cycle, is also a
consensus motif (pattern 6, 60/559 pieces).

Chains of a mutual edge followed or preceded by a single edge [patterns 2 and 7
in Fig. 4(b)] commonly occur, usually as parts of larger 4-5 node cycles. Notably,
however, only pattern 2 was a consensus motif. This asymmetry is due to appear-
ances of pattern 2 at the beginning of a piece, where a I-V—I harmonic progression
is often used to establish the tonic. On the other hand, pieces ending with a I-V-I
cadence usually involve three-node cycles such as patterns 5 and 6. Additional con-
sensus motifs include combinations of three-, four- and five-node cycles and cycles
with one mutual edge (Table 1, patterns 10-12).

We find that dynamical patterns with more than two mutual edges are very
rarely encountered as motifs, and in fact are often anti-motifs (occur significantly
less often than at random). For example, the three-node fully connected clique
(X «—= Y, X «— Z,Y «—— Z) appeared as a motif in only 14/559 pieces,
and was a strong anti-motif in many pieces. This might be related to the fact that
more than two mutual edges can obscure the central role of the tonic and the
directionality of the piece [8, 38].

The most prominent difference between the motifs of classical and 20th century
popular pieces in our database was in three- and four-node cycles (patterns 4 and 7
in Table 1), which appeared frequently in 20th century popular pieces (51/484 and
47/484) but were motifs in only one of the classical pieces.

5. Classification of Musical Pieces

We sought to compare different pieces based on their motifs. We employed a method
that compares motif profiles and is insensitive to the sizes of the musical pieces [23].
We calculated the significance profile (S) of the appearances of the eight possible
three-node dynamical patterns (Fig. 4). The significance profile is defined as the
normalized vector of Z-scores of each pattern:

Z;

Vo 22

Si =
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Fig. 4. (a) Correlation coefficient matrix of the subgraph significance profiles of 559 musical

pieces. The pieces were clustered according to significance profiles similarity (using hierarchical

clustering of Matlab 7). The main three-node motifs in each cluster are shown on the left. (b)

Average significance profiles of each of the seven clusters, a—g, in (a), showing the main three-node
motif in each cluster.

where Z; is the Z-score of pattern i (i = 1,...,8). We find that musical pieces can
be classified into seven families based on the similarity in their significance profiles
for three-node patterns (Fig. 4). Most families are characterized predominantly by
one three-node pattern [Fig. 4(b)]. One of the families (family b) is characterized
by two three-node patterns, pattern 2 and 7. Individual pieces rarely have two or
three different three-node motifs, but cluster into one of the families based on their
most significant motif.

What is the meaning of the classification of pieces according to their dynamical
patterns? One might hypothesize that each dynamical pattern can have a cogni-
tive correlate and may convey a distinct feeling such as “static” (patterns with
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Fig. 5. Chord sequences representing (a) the same dynamical pattern and different chord iden-
tities and (b) the same chord identities and different dynamical pattern.

mutual edges) or “non-static” (cycle patterns). It will be interesting to study the
cognitive effect of short chord sequences representing different dynamical patterns,
using psychophysical experiments. One possible experiment is to study the cog-
nitive responses to different dynamical patterns with the same chords and to the
same dynamical patterns with different chords (Fig. 5). This type of experimental
design can help separate the effects of chord identity and dynamical pattern on
music perception.

The present approach considers only dynamical patterns, and obviously does not
relate to most of the beauty and essence of musical harmony, which is borne by the
chord identities and their interrelations. Rather, this approach aims at presenting a
graphical vocabulary of harmonic patterns in a piece, in a systematic manner which
does not depend on exact chord identities, or chord-sequence length.

The present approach is not applicable to music which is not based on harmonic
variation, such as some forms of non-Western music. It is also difficult to analyze
some modern and atonal music, in which the abundance of enharmonic chords and
the avoidance of a single tonal center prohibit unequivocal chord annotation.

We presented an approach to systematically detect significant dynamical pat-
terns which are walks on graphs representing transitions between states of a
dynamic system, and applied it to networks of harmony in music. This method
allows the detection of variable length patterns which share the same basic topol-
ogy. Only a tiny fraction of the possible patterns are actually found as motifs. It is
interesting that music of different eras and styles converge on a relatively small set
of patterns. These patterns are presumably favored due to the cognitive effects they
produce in the listener [6,8,15,39]. The recurring patterns, which predominantly
include cycles and cycles with a mutual edge often involving the tonic, corresponded
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to well-studied principles of tonal harmony. Cliques and patterns with more than
two mutual edges were rare. This may be related to the preference for directionality
in music [8, 38], and for a single “center of gravity” represented by the tonic.

The coarse-grained dynamical pattern representation of the harmonic movement
may be used for additional feature analysis, such as musical complexity [35]. The
present approach can in principle be applied to analyze recurring patterns in other
musical components such as melody and rhythm. It may also help to study the
dynamics of other systems that move through discrete states (e.g. states of robotic
arms or states of computer programs during runs).
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