
Geometric constraints on neuronal connectivity
facilitate a concise synaptic adhesive code
Shalev Itzkovitz*†, Leehod Baruch*, Ehud Shapiro, and Eran Segal

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Edited by Charles F. Stevens, Salk Institute for Biological Studies, La Jolla, CA, and approved April 7, 2008 (received for review December 25, 2007)

The nervous system contains trillions of neurons, each forming
thousands of synaptic connections. It has been suggested that this
complex connectivity is determined by a synaptic ‘‘adhesive code,’’
where connections are dictated by a variable set of cell surface
proteins, combinations of which form neuronal addresses. The
estimated number of neuronal addresses is orders of magnitude
smaller than the number of neurons. Here, we show that the
limited number of addresses dictates constraints on the possible
neuronal network topologies. We show that to encode arbitrary
networks, in which each neuron can potentially connect to any
other neuron, the number of neuronal addresses needed scales
linearly with network size. In contrast, the number of addresses
needed to encode the wiring of geometric networks grows only as
the square root of network size. The more efficient encoding in
geometric networks is achieved through the reutilization of the
same addresses in physically independent portions of the network.
We also find that ordered geometric networks, in which the same
connectivity patterns are iterated throughout the network, further
reduce the required number of addresses. We demonstrate our
findings using simulated networks and the C. elegans neuronal
network. Geometric neuronal connectivity with recurring connec-
tivity patterns have been suggested to confer an evolutionary
advantage by saving biochemical resources on the one hand and
reutilizing functionally efficient neuronal circuits. Our study sug-
gests an additional advantage of these prominent topological
features—the facilitation of the ability to genetically encode neu-
ronal networks given constraints on the number of addresses.

complex networks � design principles � evolution

Much of the complexity of neuronal networks lies in the pattern
of synaptic connections between neurons (1). The human

brain contains �1011 neurons, each forming �104 synaptic con-
nections (2). How do neurons know how to make the right
connections? Roger Sperry’s ‘‘chemoaffinity hypothesis’’ postulates
that neurons select their targets by recognizing distinct molecular
markers displayed on the neuronal surfaces (3). The implication of
this hypothesis is that neuronal connectivity is genetically encoded.
Candidate genetic loci for the synaptic connectivity code have been
found in several organisms including Caenorhabditis elegans (4, 5),
Drosophila (6), and vertebrates (7). Recent work has suggested that
in vertebrates, protocadherins—cell adhesion proteins of the cad-
herin superfamily may constitute this adhesive code (7–13). Pro-
tocadherins are localized to the synaptic junctions, where they form
contacts with similar proteins on neighboring neurons (13, 14).

A naı̈ve design for genetically encoding neuronal networks would
assign each neuron a unique address and a list of addresses that it
should connect to. This design potentially permits the genetic
encoding of any arbitrary network but poses the problem of
requiring diversity of the markers constituting the neuronal ad-
dresses. Although the genomic architecture of the protocadherin
proteins resembles that of T cell receptors, with a variable extra-
cellular portion of the protein spliced to a constant intracellular
domain (8), mechanisms such as somatic recombination and hy-
permutation, which generate diversity in the immune system have
not been observed in the protocadherin loci. Rather, the distinct
number of protocadherin proteins in the mammalian brain is

currently estimated to be �50 (7) and does not seem to increase
from mouse to human. The marker diversity needed could be
obtained by a combinatorial expression of a set of markers. With a
set of m markers one could potentially achieve 2m different
neuronal addresses, enough to implement any connectivity pattern
even with 50 proteins. However, such an elaborate combinatorial
expression by a neuron has not yet been observed. Rather, indi-
vidual neurons usually express only a small subset of protocadherin
proteins, and the number of possible distinct combinations on a
single neuron has been estimated at �105 (9). Thus, the orders-of-
magnitude differences between the number of available combina-
tions of molecular markers and the size of the neuronal network
seem to represent a paradox as to how the resulting connectivity can
be achieved.

Here, we suggest that this paradox can be resolved if the design
of neuronal networks is not random but rather displays unique
topological features—a geometric layout with recurring connectiv-
ity patterns. We find that the vast complexity of neuronal wiring can
be genetically encoded by a concise set of neuronal addresses if
neurons are physically limited in space so that they can potentially
form connections not with the entire network but, rather, with a
limited set of targets in their physical neighborhood. This geometric
network design allows the reutilization of the same set of markers
in different, physically separated regions of the networks.

We also find that the appearance of recurring connectivity
patterns that effectively create a more ordered network can further
reduce the number of required neuronal addresses. In our simula-
tions, we generate geometric networks with different levels of order
and show that the extent at which the same connectivity patterns are
reutilized inversely correlates with the minimal number of neuronal
addresses required. We further demonstrate these results by show-
ing that the number of neuronal addresses needed to wire the C.
elegans neuronal network is significantly lower than in randomized
networks with the same geometric constraints and the same sym-
metry.

Geometric architecture of neuronal networks has been suggested
to be optimal in the sense of minimizing wire length (15, 16), thus
saving biochemical resources and minimizing signal delay and
attenuation. Our study highlights an additional potential evolution-
ary advantage of geometric constraints—allowing network wiring
with a concise limited set of molecular markers. Our results further
predict that a constraint on the number of molecular markers may
select for ordered network topologies containing recurring con-
nectivity patterns.
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Results
Number of Neuronal Addresses in Geometric Networks Scales Sublin-
early with Network Size. We first sought to compare the minimal
number of addresses required to genetically encode arbitrary
networks with no geometry to the number required to encode
networks with geometric constraints. We generated arbitrary di-
rected geometric networks with N nodes arranged on a d-
dimensional Euclidean lattice with toroidal (continuous) boundary
conditions (17). Among every pair of nodes within a range of R
lattice units, an edge in each direction is set with probability p �
k/D, where D � (2R � 1)d is the neighborhood size. and k is the
average number of edges per node (Fig. 1b). Arbitrary networks
without geometric constraints were created according to the Erdős–
Rényi model (18) by connecting any pair of nodes with probability
p � k/N in each direction (Fig. 1a).

We consider a neuronal wiring code in which each neuron is
identified uniquely by an address, a protein or a set of proteins
expressed on its surface. A neuron X will form a synapse with
neuron Y if the pattern of proteins on Y’s dendrites corresponds to
that on X’s axon. We do not assume any mechanism of interaction
or internal computation here, only that neurons are uniquely
identified by a set of proteins on their surface and that a deter-
ministic intracellular logic determines whether the addresses will
connect or not [neurons can display different sets of proteins on
their axons and dendrites, but for simplicity, we define a neuronal
address as the union of these two sets]. The results that follow are
invariant to such an extension of the model (see Methods)]. A
pattern of connectivity between any two neuronal addresses A, B
(a directed edge, edges in both directions, or no edge) requires that
all neuronal pairs in the network that have these addresses and are
physically close enough to connect will connect similarly. We
computed the minimal number of addresses compatible with a
given network using a heuristic optimization algorithm (Methods).
Hereafter, the number of addresses and the minimal number of
addresses will be used synonymously.

A crucial difference between arbitrary networks and geometric
networks is in the set of nodes to which any given node can connect.
Whereas in arbitrary networks, this set includes the entire network,
in geometric networks this set includes only nodes within a volume
of size D � (2R � 1)d (Fig. 1). We find that the minimal number
of neuronal addresses scales linearly with network size N in
arbitrary networks without geometric constraints (Fig. 2). In con-
trast, in geometric networks in which D is larger than log(N), the
number of addresses scales approximately as �DN, the square root
of the network size and the neighborhood size (see Methods for
analytical derivation). Thus, increasing the network size while
maintaining the same geometric constraints (same D) results in a

substantial decrease in the number of required addresses relative to
arbitrary networks with no geometry. As the local connectivity
neighborhood size D approaches N, the geometric constraints are
alleviated, and the number of addresses scales linearly with network
size N. Thus, the smaller the target size allowed for each neuron, the
smaller the number of addresses required. In geometric networks in
which the neighborhood size D is smaller than log(N), the number
of neuronal addresses is asymptotically independent of network size
(Methods).

The scaling exponent of the number of neuronal addresses versus
network size depends slightly on the mean connectivity of each
neuron k. It peaks at �1/2 (that is, the number of addresses scales
as N�, where � � 1/2) for k � D/2 and becomes smaller for both
smaller and larger mean connectivity [see supporting information
(SI) Fig. S1]. The number of neuronal addresses required to encode
the wiring of a fully connected neighborhood (k � D) and an empty
network (k 3 0) approaches zero.

Many real world networks are often modeled not with the

Fig. 1. The number of addresses required to wire geometric networks is smaller than the number required to wire arbitrary networks. All networks have 225
nodes and a mean connectivity of two edges per node. Addresses are depicted by colors. The addresses of the two highlighted nodes and their connected
neighbors in each figure are shown above each image. (a) An arbitrary Erdős–Rényi network in which all nodes can connect to each other requires 218 addresses.
(b) A 2D geometric network with a neighborhood size of D � 9 nodes requires only 38 addresses. (c) An ordered geometric network in which the same connectivity
pattern in a neighborhood of size D � 9 is iterated throughout the network. The network requires 12 addresses. The geometric networks shown have
noncontinuous boundary conditions for clarity.

Fig. 2. Number of addresses in geometric networks scales sublinearly with
network size. Shown is a log–log plot of minimal number of addresses vs.
network size. In arbitrary networks with no geometric constraints, the number
of addresses scales linearly with network size N (filled triangles). In geometric
networks, the minimal number of addresses scales approximately as the
square root of network size N and of the neighborhood size D. Filled symbols
are simulation results for 1D geometric networks, open symbols are for 2D
networks. The number of addresses is independent of dimensionality and
depends only on the neighborhood size. Lines show the analytical approxi-
mation obtained by numerically solving Eq. 3. All networks have a mean
connectivity k � 5 (standard errors smaller than marker size).
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Erdős–Rényi model, which result in a Poissonian degree distribu-
tion, but rather with networks with heavy tailed degree distributions
(19, 20). To study the effect of heavy tailed degree distributions on
the minimal number of neuronal addresses, we simulated geometric
networks with power law out degrees (p(k) � k��) (19, 20). Such
networks have been suggested to better represent neuronal net-
works such as that of the worm C. elegans (17). Interestingly, the
more skewed the connectivity distribution (the smaller the power
exponent �), the smaller the number of addresses needed. This can
be understood when considering the limit of � � 2. In this limit, a
condensation effect occurs, where each local neighborhood resem-
bles a star-like network (21), with a central hub connecting to all
reachable targets. Such a topology contains only two addresses in
each neighborhood—one for the hub and another for all other
nodes.

The scaling behavior of the number of addresses with neighbor-
hood size is obtained for 1D and 2D (Fig. 2) as well as for 3D
geometric networks (data not shown). It depends only on the size
of the neighborhood and not on the dimension. In addition, our
results can be generalized to other network models such as topo-
graphic mappings and small-world networks (22) (SI Text). The
significant reduction in the required number of neuronal addresses
is achieved whenever neurons are constrained to potentially con-
nect only to a subset of neurons rather than to any other neuron in
the network (Fig. S2).

Our model assumes that neurons are capable of arbitrarily
complex calculations on the addresses displayed on their surfaces.
The attainable calculations performed by a neuron may be limited
by biochemical mechanisms. For example, one can consider a more
mechanistically detailed code in which synapses form only if the
source and target neurons display a common surface protein on
their axons and dendrites respectively. Such a limitation will in-
crease the number of addresses required to encode the same
network topology (thus our calculations provide a lower bound).

In summary, we find that a geometric network design in which
connections for each neuron are arbitrarily placed not with the
entire network but only within a limited physical neighborhood
substantially reduces the required number of neuronal addresses.
The minimal number of neuronal addresses scales approximately as
the square root of the network size rather than a linear scaling in
arbitrary networks with no geometry.

Geometric Networks Containing Recurring Connectivity Patterns Re-
quire Fewer Addresses than Arbitrary Geometric Networks. Thus far,
we compared random networks with geometric constraints to
arbitrary networks without geometric constraints and found that
geometric networks facilitate connectivity with far fewer neuronal
addresses. The human neuronal network is �1,000 times larger than
the mouse neuronal network. Arbitrary geometric neuronal wiring
would thus require only �30 times as many addresses in human
relative to mouse, rather than 1,000 times in networks without
geometric constraints. However, the estimated number of pro-
tocadherin addresses (105) is still orders of magnitude smaller than
the square root law prediction (assuming n � 1011 and D � 104, the
required number of addresses should exceed 107). We next attempt
to solve this discrepancy.

An important characteristic of real neuronal networks that we
have thus far ignored is that they are not random but, rather, display
recurring connectivity patterns (17, 23–27). These patterns, often
termed ‘‘network motifs,’’ have been suggested to serve as func-
tional building blocks in information processing networks (28). We
next studied whether such nonrandomness in the network topology
further reduces the required minimal number of neuronal addresses
relative to random geometric networks.

We started out with an ordered geometric network, in which the
same connectivity pattern was repeated in each neighborhood (Fig.
1c). We then randomized the network by successively removing and

adding edges at random within each local neighborhood and
recalculated the minimal number of addresses.

We find that the more ordered the networks, the fewer the
number of addresses required to encode it (Fig. 3). In the extreme
case of a fully ordered network, the number of addresses becomes
invariant to network size. In this case, increasing the network size
involves adding neighborhoods with the same connectivity and the
same set of addresses (Fig. 1c). Thus, increasing the size of the
network, while repeating existing connectivity patterns, can facili-
tate encoding neuronal networks with substantially fewer addresses
than random geometric networks.

Number of Addresses in C. elegans Neuronal Network Is Significantly
Smaller than Randomized Networks with the Same Degree Sequences
and the Same Geometric Constraints. We have shown that in simu-
lated ordered geometric networks containing recurring connectiv-
ity patterns, the number of neuronal addresses is substantially lower
compared with random geometric networks. We next asked
whether this order-related reduction occurs in real neuronal net-
works. To answer this, we computed the minimal number of
addresses in the C. elegans neuronal network, the only one to date
whose connections have been fully mapped (24). We then gener-
ated 1,000 randomized networks with the same degree sequences
as the real network (same number of incoming and outgoing edges
at each node), and with the same geometric constraints, and
computed the minimal number of addresses for each network.
Lacking detailed coordinates and physical span of the neurons, we
used the pattern of connection to estimate a measure of physical
proximity (Methods).

We find that the real neuronal network, with 281 nodes and
�2,000 edges can be encoded by 80 neuronal addresses. This means
that it can potentially be wired with 80 different combinations of
surface proteins. The randomized networks could be encoded by
85 � 1.5 neuronal addresses (P � 0.003) (Fig. 4). Indeed, the C.
elegans neuronal network has been shown to contain a large set of
highly significant network motifs that cannot be explained solely by
geometry (17, 26, 28). This result holds even when controlling for
all right–left and ventral–dorsal symmetries in the network (SI
Text).

Fig. 3. Ordered geometric networks require fewer addresses than random
geometric networks. One-dimensional geometric ordered networks with n �
1,000 nodes and k � 2 edges per node with a neighborhood size of D � 25 were
generated by replicating the connections in one random neighborhood
throughout the network. The network was then randomized by shuffling
edges within each neighborhood. The number of addresses increases as the
geometric networks become less ordered. x axis is the fraction of edges
rewired; y axis is the number of addresses. Standard deviations are across 100
repetitions.
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Discussion
Understanding how the patterns of neuronal connections are
genetically encoded is a formidable challenge. Here, we studied the
relation between the topologies of neuronal networks and the
minimal number of genetically encoded addresses required to wire
them. We found that the number of neuronal addresses required to
wire arbitrary Erdős–Rényi networks, in which any two neurons can
potentially form a synaptic connection is on the order of the number
of neurons in the network. In contrast, arbitrary networks with
geometric constraints require a significantly smaller number of
addresses that scales approximately only as the square root of the
network size. We also found that within the class of geometric
networks, the minimal number of addresses is further reduced in
ordered network topologies in which a connectivity pattern is
replicated throughout the network. The more ‘‘order’’ there is in the
network, the lower the number of addresses needed to encode it.

The existence of geometric patterns of connectivity in neuronal
networks in which neurons are constrained to connect to a limited
physical neighborhood have been realized for a long time and
attributed to a wire-length minimization principle, saving biochem-
ical resources and minimizing signal delay and attenuation (15, 16).
Here, we suggest a different evolutionary force that may select for
a geometric network design. We find that geometric networks can
be wired with a substantially smaller number of neuronal addresses
compared with arbitrary networks without geometry. Because
physically separated parts of the network cannot form connections,
the same set of addresses (e.g., surface proteins) can be reused again
and again. Thus, if neuronal wiring is to be genetically encoded by
a limited set of addresses, a geometric network might be the only
way to realize this goal.

The optimality of the geometric design of neuronal networks has
an analogy in the technological world. In radio broadcasting, a
limited frequency band is used to accommodate different infor-
mation channels, each using a limited bandwidth around a carrier
frequency (29). By limiting the transmission power of antennas, the
same carrier frequencies can be used to transmit different infor-
mation in spatially remote areas. As in the genetically encoded
addresses, the information conveyed in the radio transmission has
a limited resource—frequency band, and by restricting communi-
cation to a local region, the resource can be reused. A high-power
transmission of an antenna would preclude the reuse of the same
carrier frequencies in neighboring regions for transmitting different
information.

Neuronal networks are far from random, displaying highly over-
represented connectivity patterns termed network motifs (17, 23–
27). Network motifs in neuronal networks have been suggested to
be selected as recurring functional building blocks, performing
efficient calculations (23, 25, 28). Here, we found that within the
class of geometric networks, ordered networks in which the same
connectivity pattern is replicated throughout the network facilitate
an additional reduction in the minimal number of neuronal ad-
dresses. Thus, this study suggests that recurring network patterns in
neuronal networks confer an additional advantage: they allow the
wiring of these networks with a concise set of genetically encoded
addresses.

To study whether the connectivity patterns of real neuronal
networks may facilitate a reduction in the number of genetically
encoded addresses, we compared the minimal number of neuronal
addresses required to encode the neuronal network of C. elegans to
randomized versions with the same degree sequences and the same
geometric constraints. We found that the number of addresses in
the real network is significantly smaller than in the randomized
networks. This result holds even when controlling for all right–left
and ventral–dorsal symmetries in the network and may be linked to
the abundance of recurring connectivity patterns found in this
network (17, 28). It is important to note that the numerical
difference between the number of addresses in the C. elegans
network and the average number in the randomized versions,
although statistically significant, is quite small. Modern high-
resolution techniques for probing neuronal connectivity (30) may
soon provide detailed large-scale data of neuronal connectivity in
mammalian brains. It will be interesting to apply the comparison
introduced here to these networks.

In mammals, an estimate of the available different expression
patterns of protocadherins, the proteins suggested to act as neuro-
nal molecular markers (7–13), is 105 (9), orders of magnitude lower
than the number of neurons (108 in mouse and 1011 in human). This
discrepancy represents an apparent paradox. This study suggests
that the paradox can be resolved if neuronal networks are wired, not
in an arbitrary manner, but are instead geometrically constrained
and contain recurring connectivity patterns.

What are the constraints that limit the number of surface
proteins encoded in the genome and their combinations on
individual neurons? The immune system, often compared in
complexity to the nervous system (31), has achieved an astound-
ing genetic diversity of 1016 different T cell receptor types (32).
Why then does the nervous system not use parallel mechanisms
to generate comparable marker diversity? One possibility is that
the stochastic diversity-generating mechanism of somatic recom-
bination and hypermutation used by T cells is not suitable for the
deterministic expression required for a genetically encoded
neuronal connectivity.

Another possible limitation on the number of different surface
proteins could be their inherent nonspecificity (13, 14). For example
cadherin proteins generally bind in a homophilic manner, but
heterophilic nonspecific binding is very common. It might be
postulated that the number and molecular identity of the protocad-
herins would be chosen so that they are maximally dissimilar, thus
minimizing nonspecific binding. A similar constraint of avoiding
nonspecific binding has been suggested to limit the number of
transcription factors (33). An additional constraint on the number
of combinations of molecular markers on a single neuron might be
the elaborate internal computation needed to decode these bio-
chemical addresses.

A prediction of our analysis is that the genetically encoded
addresses should be expressed in a ubiquitous manner throughout
the brain. Indeed, unlike other proteins from the cadherin super-
family in which expression is limited to specific brain regions or
subsets of neurons, protocadherins are broadly expressed through-
out the central nervous system (10, 12, 34, 35).

Fig. 4. Number of addresses required to wire the C. elegans neuronal
network is significantly smaller than the number required to wire randomized
networks with the same degree of connectivity and the same geometric
constraints (P � 0.003). Shown is the distribution of addresses for the ran-
domized networks. Arrow denotes the number of addresses required to wire
the real network, 80 addresses.
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The human neuronal network is three orders of magnitude
larger than the mouse neuronal network, although the number
of protocadherins in their genomes is the same. This study
predicts that either the number of combinations of different
protocadherins on a single neuron is larger in human, resulting
in more addresses obtained in a combinatorial fashion, or that
the human neuronal network is more ordered, containing more
repetitive connectivity patterns compared with mouse. Modern
high-resolution techniques for probing neuronal connectivity
(30) and for exploring expression patterns on single neurons (9,
36) will allow testing these predictions.

This study touched on only one layer of neuronal complexity—
that of the pattern of synaptic connections. Much of the complexity
of neuronal networks lies in the synaptic weights, which are
dynamically modified in an activity-dependent manner during
processes such as learning (1, 37). Activity-dependent mechanisms
cannot only affect synaptic weights but can completely rewire
synapses (37). Thus, the model presented here that considered
solely genetically encoded neuronal wiring is only an approxima-
tion. Another layer of complexity is the intracellular molecular
mechanism by which neurons recognize the neuronal addresses of
neighboring neurons to decide whether to form a synaptic connec-
tion or not. Unraveling this decoding mechanism is an exciting field
for future research.

The conclusions of this study, namely that geometric networks
with recurring connectivity patterns facilitate connectivity with a
concise set of addresses, do not depend on the precise identity of
the neuronal addresses or on the biochemical details of the synaptic
adhesive code. In fact, these conclusions may apply to other
biological networks in which connectivity is determined by genet-
ically encoded addresses. In transcriptional networks, for example,
where edges represent binding of transcription factor proteins to the
promoters of target genes, the genetically encoded addresses are
amino acid sequences on the surface of the transcription factors and
short DNA sequences on the promoters of the target genes. The
diversity of these addresses is limited, e.g., by coding constraints
(33). It would be interesting to investigate whether such constraints
dictate distinct topologies for these and other biological networks.

Although biological systems are tuned to optimality by evolution,
the performance criteria for which these systems are optimized are
often elusive. This study suggests that the genetically encoded
geometric neuronal connectivity exemplify this phenomenon. We
suggest an evolutionary advantage for geometric constraints and
network motifs in neuronal networks. Not only do these topological
features of connectivity allow a more efficient transmission between
neurons and efficient computation but also facilitate the genetic
encoding of these networks with a concise set of genetically
encoded addresses.

Methods
Network Generation. We generated arbitrary directed geometric networks G
with N nodes arranged on a d-dimensional Euclidean lattice with toroidal (con-
tinuous) boundary conditions, as in ref. 17. Among each pair of nodes with
distance r � R lattice units, an edge is set in each direction with probability p �
k/D, where D � (2R � 1)d is the neighborhood size, and k is the average number
of edges per node. We used the L-infinity norm: the distance r between each pair
of nodes X,Y with coordinates {Xi}i�1..d and {Yi}i�1..d is r(X,Y) � max Xi � Yi .
Erdős–Rényi networks (18) were created by connecting any pair of nodes with
probability p � k/N in each direction.

Minimal Number of Addresses. Given a directed network G(V,E) with nodes V and
edges E and a nondirected neighborhood network G�(V,E�) in which any two
nodes are connected by a link if they are physically close enough to be able to
connect, we seek a mapping f from V to a set of addresses C and a corresponding
directed network GC(C,E��), where the nodes are the addresses, and the edges
represent the relations between them. A solution S � {f,GC} is admissible if for
every pair of nodes (u,v)�E� so that f(u) � A and f(v) � B, (u,v)�E iff (A,B)�E��. In
other words, the connectivity pattern between any two addresses, as defined by
GC (the presence or absence of an edge) must be replicated for all nodes with

these addresses that are within physical reach of each other. We sought to
compute the admissible mapping with minimal size  C . This problem is nonde-
terministic polynomial time complete (NP-complete) (Fig. S4). When the neigh-
borhood network is the complete graph (that is, the geometric constraints are
alleviated), the problem of finding addresses and their relation GC is similar to
block model methods in social network analysis (38, 39).

Heuristic Algorithm for Finding the Minimal Number of Addresses. We applied
aheuristicgreedysearchalgorithmtocomputetheminimalnumberofaddresses.
A similar algorithm has been applied for graph coloring problems (40). The
greedy search begins with an empty assignment of addresses to nodes and an
empty directed graph GC. It scans the nodes according to some predefined order
and successively assigns addresses and updates GC. The first node is assigned
address 1. Thereafter, at node i, we check whether any of the previously assigned
c addresses is consistent with the connections of i. If none of the addresses are
consistent, a new address is added. If one or more previously used address is
consistent, node i is assigned one of the consistent address according to one of
four rules (see below). In both cases, GC is updated appropriately. An address
assignment ci to node i is consistent if two conditions are met: (i) The connections
between i and all other nodes in its neighborhood that have already been
assigned an address are congruent with GC. (ii) For each node j that has already
been assigned address ci, we list the set of common reachable nodes between i
and j, {Sij}—nodes thatare in theneighborhoodofboth iand j. Consistencymeans
that for each u in Sij i 3 u iff j 3 u and u 3 i iff u 3 j. Although the second
condition is not necessary to reach an admissible solution, without it the fraction
of admissible solutions reached decreases substantially. The greedy search is
evoked many times, each time with different node orders and choices between
consistent addresses. The node orders used are in-order, increasing degree,
decreasing degree, and random order. The address choices are according to the
address with the most assigned nodes, the least assigned nodes, according to the
order at which they have been created, and at random. We ran the algorithm
with all combinations, including 10 different random address choices for each
node order and output the minimal number of addresses found.

Scaling Formula for the Number of Neuronal Addresses. Here, we show analyt-
ically that under biologically relevant network and neighborhood sizes, the
minimal number of neuronal addresses scales as the square root of both network
and neighborhood sizes. We first calculate the number of admissible solution
with c addresses:

n	c
 � cN2c2 [1]

This formula can be understood as follows: There are cN possible mapping of
nodes to addresses ( f ) and for each mapping 2c2 possible directed networks GC
representing the relations between addresses (we neglect a c! term in the
denominator that corrects for isomorphic solutions because its effect on the
bound below is negligible). We next consider the probability that an arbitrary
network G will be admissible given one solution (a predefined S � {f,GC}). There
are DN ordered pairs of nodes that should be consistent with the solution S. This
means that, given a node v and another node in its neighborhood u, the presence
or absence of an edge v3u should match the presence or absence of an edge in
GC between f(v) and f(u). Given an arbitrary solution S, the probability that all
these pairs will be consistent with the solution is (1/2)ND. This will generally be
extremely small; however, Eq. 1 indicates that there are many possible solutions.
The probability that any solution with c addresses will be admissible is:

p � cN2c22�DN [2]

An estimate for the minimal number of addresses c can be obtained by setting
p � 1:

cN2c22�DN � 1f2N log2c2c2
� 2DNfN log2c � c2 � DN � 0

[3]

The minimal number of addresses can be obtained by numerically testing increas-
ing values of c, from 1 up to the maximum possible number of addresses N, until
Eq. 3 is satisfied. If c � 2D, the term cN dominates in Eq. 3 and the minimal number
of addresses is independent of network size N:

c � 2D [4]

For N �� 2D, the quadratic term in c in Eq. 3 dominates, and the scaling of the
minimal number of addresses is:

9282 � www.pnas.org�cgi�doi�10.1073�pnas.0712207105 Itzkovitz et al.

http://www.pnas.org/cgi/data/0712207105/DCSupplemental/Supplemental_PDF#nameddest=SF4


c � �DN [5]

This is thepower-lawobservedinthis study(Fig.2).SeeFig.S3fordetailedanalysis
of the scaling regimes of Eq. 3.

Eq. 3 can also be interpreted as follows: The minimal number of addresses c is
the smallest for which the number of realizable networks (given by Eq. 1) is equal
to the number of arbitrary geometric networks, which is �2DN:

cN2c2
� 2DN [6]

If theneighborhoodsizeD is smaller than log2N (orequivalentlyN�2D), anupper
bound of c � 2D will be sufficient to wire any network, regardless of N, because
the left side of Eq. 6 is always larger than cN. Thus, in this regime, the number of
addresses becomes independent of network size. However, for neighborhood
sizes larger than log2N (N � 2D), the maximal value of cN that is obtained when
each node has a different address (c � N) is not enough to cover the geometric
network space. In this regime, the term 2 cˆ2 dominates, and we derive the
square-root scaling law. Innetworkswithoutgeometry,D�N, andEq.6 indicates
that the minimal number of addresses c is also on the order of the number of
nodes N (2 cˆ2

� 2N2).
Note that the analysis here did not require designating the precise geometric

constraints, e.g., Euclidean lattice. In fact, the analysis is valid for any network in
which nodes are limited so that they can potentially connect only to a part of the
network D rather than to any other node. Such limitations also include topo-
graphic mappings in which nodes connect to a limited set of targets at a large
distance and small-world networks (SI Text).

The square root scaling remains intact when considering a more elaborate
code in which each neuron is assigned two addresses, one representing the set of
proteins expressed on its axon and one for the set of proteins expressed on the
dendrites. In this model, the number of possible solutions will be n(c) � c2N2c2

instead of n(c) � cN2c2, which leads to a negligible effect on the scaling of minimal
number of addresses with network size, as long as N2 �� 2D, the regime in which
all biologically relevant networks reside.

Relation Between Network Order and the Number of Neuronal Addresses. We
generated maximally ordered networks in which each neighborhood contains
exactly thesameconnectivitypattern,anarbitraryErdős–Rényinetworkof sizeD.
We then rewired these networks by successively deleting an edge and adding a
new edge within the same local neighborhood. This creates networks with the
same geometric constraints with decreasing levels of order. The minimal number
of neuronal addresses for each level of order was calculated (Fig. 3).

C. elegans Neuronal Network. The C. elegans neuronal network was downloaded
from www.wormatlas.org/handbook/nshandbook.htm/nswiring.htm. The net-
work includes 281 nodes, 2,194 chemical synapse connections and 1,031 gap
junction connections. The minimal number of addresses was computed as in the
simulated geometric networks. Because we do not have precise information on
the neuronal physical location, specifically on the physical span of neuronal
processes, we used a different measure of geometric proximity based on the
neuronal connectivity. We define the proximal targets of a neuron X as the set of
allnodes that sendadirectedsynaptic connectiontoX, receiveadirectedsynaptic
connection from X, or connect to X via a gap junction. This definition is only an
approximation and may miss neuronal pairs that are in physical proximity but do
not have any connection.

C. elegans Neuronal Network Randomization. Randomized versions of the C.
elegans neuronal network were generated as follows: starting from the original
network, we performed the following Markov chain Monte Carlo algorithm: For
50,000 iterations, we chose pairs of nodes (s1, t1), and (s2, t2), such that s13 t1,
s23 t2, s1x t2, s2x t1 and (s1, t2) and (s2, t1) are within physical reach of each
other. We then switched them so that s13 t2, s23 t1. The algorithm produces
random networks that have the same degree sequence as the real network. It is
similar to the network randomization algorithm used in ref. 28 but, in addition,
preserves the geometric constraints of the real network.
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