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The genetic code is nearly optimal for allowing
additional information within protein-coding
sequences
Shalev Itzkovitz1,2 and Uri Alon1,2,3

1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; 2Department of Physics
of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

DNA sequences that code for proteins need to convey, in addition to the protein-coding information, several
different signals at the same time. These “parallel codes” include binding sequences for regulatory and structural
proteins, signals for splicing, and RNA secondary structure. Here, we show that the universal genetic code can
efficiently carry arbitrary parallel codes much better than the vast majority of other possible genetic codes. This
property is related to the identity of the stop codons. We find that the ability to support parallel codes is strongly
tied to another useful property of the genetic code—minimization of the effects of frame-shift translation errors.
Whereas many of the known regulatory codes reside in nontranslated regions of the genome, the present findings
suggest that protein-coding regions can readily carry abundant additional information.

[Supplemental material is available online at www.genome.org.]

The genetic code is the mapping of 64 three-letter codons to 20
amino-acids and a stop signal (Woese 1965; Crick 1968; Knight et
al. 2001). The genetic code has been shown to be nonrandom in
at least two ways: first, the assignment of amino acids to codons
appears to be optimal for minimizing the effect of translational
misread errors. This optimality is achieved by mapping close
codons (codons that differ by one letter) to either the same
amino acids or to chemically related ones (Woese 1965). This
feature has been attributed to an adaptive selection of a code, so
that errors that misread a codon by one letter would result in
minimal effects on the translated protein (Freeland and Hurst
1998; Freeland et al. 2000; Gilis et al. 2001; Wagner 2005b). Sec-
ond, amino acids with simple chemical structure tend to have
more codons assigned to them (Hasegawa and Miyata 1980; Duf-
ton 1997; Di Giulio 2005).

There exist a large number of alternative genetic codes that
are equivalent to the real code in these two prominent features
(Fig. 1). Here we ask whether the real code stands out among
these alternative codes as being optimal for other properties.

We consider the ability of the genetic code to support, in
addition to the protein-coding sequence, additional information
that can carry biologically meaningful signals. These signals can
include binding sequences of regulatory proteins that bind
within coding regions (Robison et al. 1998; Stormo 2000; Lieb et
al. 2001; Kellis et al. 2003). Such binding sites are typically se-
quences of length 6–20 bp. In addition to regulatory proteins,
there are binding sites of structural proteins such as DNA- and
mRNA-binding proteins (Draper 1999). Histones, for example,
bind with a code that has a periodicity of about 10 bp over a site
of about 150 bp (Satchwell et al. 1986; Trifonov 1989; Segal et al.

2006). Other codes include splicing signals (Cartegni et al. 2002)
that include specific 6–8 bp sequences within coding regions and
mRNA secondary structure signals (Zuker and Stiegler 1981;
Shpaer 1985; Konecny et al. 2000; Katz and Burge 2003). The
latter often correspond to sequences of several dozen base pairs
or longer. Since we do not know all of these additional codes, and
different organisms can use a vast array of different codes, we
tested the ability of the genetic code to support arbitrary se-
quences of any length in parallel to the protein-coding sequence.

We find that the universal genetic code can allow arbitrary
sequences of nucleotides within coding regions much better than
the vast majority of other possible genetic codes. We further find
that the ability to support parallel codes is strongly correlated
with an additional property—minimization of the effects of
frame-shift translation errors. Selection for either or both of these
traits may have helped to shape the universal genetic code.

Results

Ability to include additional sequences

We first considered the ability of the genetic code to support, in
addition to the protein-coding sequence, additional sequences
that can carry biological signals. For this purpose, we studied the
properties of all alternative genetic codes that share the known
optimality features of the real code (Fig. 1). Each alternative code
has the same number of codons per each amino acid and the
same impact of misread errors as in the real code.

We tested the ability of the genetic codes to include arbi-
trary sequences, denoted n-mers, within protein-coding regions.
As an example, consider the 5-mer “UGACA.” This sequence may
be a protein-binding site, which should appear within a protein-
coding region. This 5-mer sequence can appear within a coding
sequence in one of the three reading frames: UGA|CAN,
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NNU|GAC|ANN, or NUG|ACA, where N denotes any nucleotide
and the vertical lines separate consecutive codons. To assess the
probability that this 5-mer appears in a coding region, one needs

to sum over the three possible reading frames (Fig. 2A). In one of
the frames, this sequence generates a stop codon, UGA. The
5-mer cannot appear in a coding region in this frame, because

Figure 1. Alternative genetic codes. (A) The real code. (B) An alternative code obtained by an A↔G permutation in the first position. (C) An alternative
code obtained by an A↔C permutation in the second position, and (D) A↔G permutation in the third position. Stop codons are marked in red, start
(Met) codons in green. Codons that are changed relative to the real code are in gray. There are 4! � 4! � 2 = 1152 alternative codes obtained by
independent permutations of the nucleotides in each of the three codon positions. (E,F) Structural equivalence of real and alternative genetic codes. For
example, (E) the nine neighboring codons of the Valine codon marked with a red arrow in the real code (shown in A) are the same as (F) the nine
neighboring codons of the Valine codon marked with a red arrow in the alternative code shown in B. Solid lines connect codons differing in the first
letter, dotted lines connect codons differing in the second letter, and dashed lines connect codons differing in the third letter. Different amino acids are
displayed in different colors. This equivalence applies to all codons.
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Figure 2. (A) Calculation of the probability that an n-mer sequence appears within a protein-coding region in the real genetic code. The 5-mer
sequence S = UGACA can appear in one of the three reading frames. For each reading frame, the probabilities of all three codon combinations that
contain S are summed up. Codon combinations with an in-frame stop (such as UGA) do not contribute to the n-mer probability since they cannot appear
in a coding region. Vertical lines separate consecutive codons, stop codons are in red, P0, P�1, P+1 denote the probabilities of encountering S in the
0/�1/+1 frame. (B,C,D) Three examples of “difficult” n-mers in the real code and in alternative codes. (B) The 5-mer UGACA, which includes the stop
codon UGA, can appear in a protein-coding sequence with the real genetic code in only two of the three possible reading frames (+1 and �1 frames).
(C) In the alternative code shown in Figure 3D, whose stop codon AAA overlaps with itself, the 5-mer AAAAA cannot appear in a protein-coding sequence
in any of the three reading frames. (D) In an alternative code with the overlapping stop codons CCG and CGG, the 5-mer CCGGU can only appear in
one reading frame. The 5-mers are in bold text, stop codons are in red, N denotes any DNA letter, green v denotes a frame in which the n-mer can
appear, red x denotes a frame in which the n-mer cannot appear. (E) Distribution of the probabilities of all 6-mers in the real code (bold black line) and
in the alternative codes (light blue lines). The x-axis is the probability of obtaining 6-mers within protein-coding sequences; the y-axis is the number of
6-mers with this probability. In the real code there are significantly less “difficult” 6-mers (with low probabilities), relative to the alternative codes. (F)
The fraction of n-mers that have a higher probability in the real code than in alternative codes increases with n-mer size. The y-axis shows the fraction
of n-mers for which the average probability of appearing in the real genetic code is significantly higher than in the alternative codes.
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coding regions have no in-frame stop codons. The sequence can,
however, appear in one of the two other frames. Overall, the
probability that this 5-mer appears in coding regions will tend to
be lower than that of 5-mers that do not include stop codons.

Each genetic code has n-mer sequences, such as the above-
mentioned sequence UGACA in the real genetic code, which are
difficult to include in coding regions: these “difficult” sequences
contain stop codons, and thus cannot appear in at least one of
the three frames, since protein-coding regions do not contain
stop codons. We find that the real genetic code is able to include
even the most difficult n-mers because it has a special property:
its stop codons, when frame shifted, tend to form abundant
codons. Hence, n-mers that cannot be included in one frame-
shift can be included with high probability in other frame shifts.

To understand the relation between the stop codons and the
ability of the genetic code to include arbitrary n-mers, consider
the 5-mer S = AAAAA (Fig. 2C). This 5-mer can appear within a
coding sequence in one of the three reading frames: AAA|AAN,

NNA|AAA|ANN, or NAA|AAA. Alternative genetic codes that as-
sign one of their stop codons as AAA (Fig. 3D), can never include
S in a protein-coding sequence. The problem is that the stop
codon AAA overlaps with itself when frame shifted; hence,
strings such as S include a stop codon in each of the three frames,
precluding their presence in a coding region.

Another example is the 5-mer S = CCGGU. In an alternative
code with stop codons CCA, CCG, and CGG, this n-mer can only
appear in one of the three reading frames (Fig. 2D). This is be-
cause two of the stop codons, CCG and CGG, overlap each other.
In contrast, the real genetic code has the stop codons UAA, UAG,
and UGA that do not overlap with themselves or with each other,
no matter how they are frame shifted. Furthermore, frame-
shifted versions of the real stop codons overlap with the codons
of the most abundant amino acids. For example, the UGA stop
codon in a �1 frame-shift message results in the di-codon
NNU|GAN, where N is any nucleotide (Fig. 2B). The GAN codons
encode Asp and Glu, which are among the three amino acids

Figure 3. Optimality of the genetic code for minimizing the impact of frame-shift translation errors. (A) Distribution of average number of translated
codons until a stop codon is encountered after a frame-shift event for the alternative genetic codes. This number corresponds to the mean length of
the nonsense polypeptide translated after a frame-shift event, and is the inverse of the frame-shifted stop probability, averaged over the +1 and �1
frame-shifts. (B) In the real code, frame-shifted stop codons overlap with abundant codons. Codons with two-letter overlap with a stop codon are
marked by + for a +1 frame-shift and – for a �1 frame-shift. Abundant codons are shown in heavier font. For example, the stop codon UAA, when frame
shifted, results in codons such as AAN (green box), or NUA (blue boxes), which are relatively abundant. (C) The “best code,” which achieves the highest
frame-shifted stop probability both in a +1 frame-shift and in a �1 frame shift. Stop codons are CAA, CAG, and CGA. In the “best code,” a stop codon
has an overlap of two positions with codons of Glycine instead of codons of Serine and Arginine in the real code. (D) The “worst code” with the lowest
frame-shifted stop probability. Stop codons are AUA, AUG, and AAA. Note that the stop codons overlap either with themselves (AAA) or with codons
for nonabundant amino-acids (those with light font), in contrast to B and C.
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with the most abundant codons (Table 1). Therefore, n-mers with
the letters UGA can be included with high probability in protein
sequences without generating an in-frame stop. The same idea
applies to the other two stop codons in the real code; this prop-
erty occurs in only very few of the alternative genetic codes. In
short, optimality for including arbitrary n-mer sequences within
coding regions is due to stop codons that do not overlap each
other, but which do overlap codons for abundant amino acids.

We calculated the probability of including all n-mer se-
quences for each alternative genetic code by summing up, for
every n-mer sequence, the probabilities of all codon combina-
tions that contain it (Fig. 2A; for details see Methods). The codon
probabilities were determined according to the known amino
acid frequencies in proteins (Table 1). The results presented in
the main text are for uniform codon usage, but they apply to a
wide range of different codon usages (Supplemental material).

We find that the real code shows significantly higher prob-
abilities to include arbitrary sequences. The average of the loga-
rithm of all n-mer probabilities is significantly higher in the real
code than in the vast majority of alternative codes (Table 2), with
a P-value < 0.05 for n-mer sequences with n greater than seven.
In addition, the real code shows significantly higher probabilities
to include the most difficult sequences (n-mers with the lowest
probability of appearing in a coding region) than the vast major-
ity of alternative codes (Fig. 2E; Table 2; Supplemental Fig. 4). For
example, the average probability of including the 20% most dif-
ficult sequences is exceeded by only 3% of the alternative codes
for 8-mers and 1% of the alternative codes for 9-mers. This prop-
erty can be seen when examining the distribution of the n-mer
probabilities of appearing within protein-coding sequences. In
the real code there are significantly fewer n-mers with low prob-
abilities (Fig. 2E).

The optimality of the real genetic code relative to alternative
codes seems to increase with the length of the n-mers (Fig. 2F).
This is because as the length of the n-mers increases, the fraction
of n-mers that include stop codons increases dramatically. Above

n = 16, more than half of all n-mers include at least one stop
codon. The real genetic code is able to include all n-mers with
n < 11 in at least one, and often many combinations of amino
acid codons. For n-mers of any length, the real code appears to
exceed almost all of the alternative codes in its ability to include
a large fraction of possible n-mers within coding regions (Fig. 2F;
Table 2).

Robustness to translational frame-shift errors

How did such near optimality for parallel codes evolve? One
possibility is that the ability to include parallel codes within pro-
tein-coding sequences conferred a selection advantage during the
early evolution of the genetic code. Alternatively, the genetic
code might have been fixed in evolution before most parallel
codes existed. We therefore sought a different selection pressure
on the code, which could have existed in the early stages of the
evolution of the genetic code. One such inherent feature of pro-
tein translation is frame-shift translation errors (Parker 1989; Far-
abaugh and Bjork 1999; Seligmann and Pollock 2004). In these
errors, the ribosome shifts the reading frame, either forward or
backward. This results in a nonsense translated peptide, and usu-
ally loss of protein function. These errors occur in ribosomes
nearly as frequently as misread errors (3 � 10�5 per codon, com-
pared with misread errors of 10�4 per codon [Parker 1989]).
These errors have a relatively large effect on fitness because they
result in a nonsense polypeptide. Frame-shift errors may thus
pose a selectable constraint on the genetic code: Codes that are
able to abort translation more rapidly following frame-shift er-
rors have an advantage (Seligmann and Pollock 2004).

To abort translation after a frame shift, the ribosome must
encounter a stop codon in the shifted frame. It has been sug-
gested that codon usage in some organisms may be biased toward
codons that can form stop codons upon translational frame shift
(Seligmann and Pollock 2004). Here, we consider whether robust-
ness to translational frame-shift errors may be linked to the struc-
ture of the genetic code. We tested all alternative codes for the
mean probability of encountering a stop in a frame-shifted pro-
tein-coding message. We find that the real genetic code encoun-
ters a stop more rapidly on average than 99.3% of the alternative
codes (Fig. 3). The real code aborts translation eight codons ear-

Table 1. Amino acid abundance (average amino acid frequency
over 134 organisms, sorted in decreasing order by codon
abundance)

amino acid abundance # codons codon abundance

Glu 6.5 2 3.2
Lys 6.0 2 3.0
Asp 5.3 2 2.6
Met 2.3 1 2.3
Ile 6.8 3 2.3
Asn 4.4 2 2.2
Phe 4.3 2 2.1
Ala 8.2 4 2.0
Gln 3.6 2 1.8
Gly 6.9 4 1.7
Val 6.9 4 1.7
Leu 10.1 6 1.7
Tyr 3.3 2 1.6
Thr 5.3 4 1.3
Trp 1.1 1 1.1
Ser 6.5 6 1.1
Pro 4.3 4 1.1
His 2.1 2 1.0
Arg 5.2 6 0.9
Cys 1.1 2 0.6

Codon abundance is the amino acid frequency divided by number of
codons for that amino acid.

Table 2. Significance of the genetic code in representing
arbitrary sequences

n-mer size
P-value average
log-probabilities P-value 20%

5 0.110 0.054
6 0.097 0.045
7 0.083 0.028
8 0.049 0.031
9 0.043 0.010

12 0.028 0.004
15 0.016 0.004
18 0.012 0.006
20 0.026 0.006
22 0.021 0.004
25 0.029 0.009

Shown are the fractions of alternative codes for which the average of the
logarithm of the probabilities of all n-mers is equal or higher to that of the
real code. Also shown are the fraction of alternative genetic codes for
which the average probability of the 20% most-difficult n-mer sequences
is equal or higher than in the real genetic code. Similar results are ob-
tained for larger fractions of the most difficult n-mer sequences. Results
for n > 8 are based on 105 randomly sampled n-mers.
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lier than the average alternative code (15 codons vs. 23 codons).
Conservative estimates suggest that such a difference, equivalent
to a relative fitness advantage of about 10�4, is readily selectable
(see Methods).

Interestingly, the ability to abort translation after frame
shift is closely related to the ability to include arbitrary parallel
codes (Fig. 4). Robustness to frame-shift errors occurs because the
frame-shifted codons for abundant amino acids overlap with the
stop codons, hence increasing the probability that stop is en-
countered upon frame shift. As mentioned above, it is precisely
this property that allows the real genetic code to include arbitrary
sequences within protein-coding regions, including those with
stop sequences, with a significantly higher probability than al-
ternative codes.

The present optimality features are shared also by almost all
of the nonuniversal codes such as those found in mitochondria
(Osawa et al. 1992; Knight et al. 2001) (see Supplemental mate-
rial). For example, the fraction of alternative genetic codes with
higher probabilities for encountering frame-shifted stop codons
is lower then 0.05 for all nonuniversal codes except for the flat-
worm mitochondrial code (see Supplemental Table 3). It is also
found for a range of different codon usages (Muto and Osawa
1987), specifically those that represent GC content of <70% (see
Supplemental material). This range of GC contents is also the
range that supports the optimality of previously known features
such as robustness to misread errors (Archetti 2004).

Discussion

In summary, we found that the genetic code is nearly optimal for
encoding additional information in parallel to its main function
of encoding for the amino acid sequence of proteins. This opti-
mality is related to the identity of the stop codons in the univer-

sal code: when frame shifted, the stop codons overlap with
codons of abundant amino acids. We showed that this optimal-
ity is strongly tied to a second useful property—minimization of
the effect of translational frame-shift errors.

Robustness to frame-shift errors may be a reasonable inher-
ent constraint on the early genetic code. One may therefore pro-
pose that the ability to carry parallel codes may have emerged as
a side effect that was later exploited to allow genes and mRNA
molecules to support a wide range of signals to regulate and
modify biological processes in cells (Kirschner et al. 2005). Alter-
natively, the ability to include arbitrary parallel sequences within
coding regions may have contributed to the selection of the early
genetic code. For example, early RNA molecules that had the
ability to both specify peptides and to include sequences that
conferred useful RNA structure may have had an advantage over
RNAs that were less effective at simultaneously fulfilling both
objectives.

Whereas many of the currently known regulatory codes re-
side in nontranslated regions of the genome (Robison et al. 1998;
Lieb et al. 2001), the present findings support the view that pro-
tein-coding regions can carry abundant parallel codes. It would
be interesting to use information-theoretical approaches (Gusev
et al. 1999; Wan and Wootton 2000; Troyanskaya et al. 2002) to
search for such codes in genomes.

Methods

Alternative genetic codes
The alternative genetic codes were obtained by independently
permuting the nucleotides in the three codon positions while
preserving the amino acid assignment (Fig. 1). These permuta-
tions preserve both the number of codons per amino acid and the
effect of misread errors on the translated protein, as defined in

Freeland and Hurst (1998) and Gilis et al.
(2001) (Fig. 1E,F). There are 4! = 24 pos-
sible permutations of the four nucleo-
tides. There are, therefore, 243 = 13,824
alternative codes. We additionally im-
pose the wobble constraint for base pair-
ing in the third codon position, which
states that any two codons differing only
in U-C in the third letter cannot be dis-
tinguished by the translation apparatus
(Crick 1968; Osawa et al. 1992). This re-
sults in two allowed permutations in the
third letter: the identity permutation
and the A↔G permutation. The en-
semble of alternative codes therefore
contains 24 � 24 � 2 = 1152 codes. In
the Supplemental material, we show
that relaxing the wobble constraint does
not change any of the present conclu-
sions (Supplemental Fig. 1).

Inclusion of arbitrary sequences within
protein-coding sequences
We calculated the probability of encoun-
tering every n-mer in a coding sequence
for each alternative code for n = 4–25.
This was done by scanning all codon
combinations in all three possible frame
shifts, which can include the n-mer se-
quence, and summing the probabilities

Figure 4. The parallel coding property is strongly tied to the translational frame-shift robustness
property. Each point represents one of the alternative codes. The x-axis shows the probability of
encountering a stop codon upon a frame-shifted event (average over +1 and �1 frame shift). The
y-axis is the average probability of appearance of the 10% most difficult 6-mers. The arrow indicates
the real code. The correlation between the two properties is 0.8. The real code is on the Pareto front,
meaning that no alternative code is better than the real code in both properties. Similar results are
obtained for n-mers of other sizes. Note that due to symmetries in the alternative codes with respect
to the features studied (Supplemental material), multiple alternative codes often have the same
values.
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of the codon combinations (Fig. 2A). Codon probabilities were
calculated from average amino acid probabilities encountered in
proteins of sequenced genomes (Pe’er et al. 2004) and uniform
codon usage (Table 1). The probability of k consecutive codons
c1,c2, . . . , ck is: P(c1,c2, . . . , ck)=∏p(a(ci))/N(a(ci)), where p(a(ci))
is the average frequency within protein-coding sequences of the
amino acid assigned in the real code to the codon ci, taken as an
average over the amino acid probabilities in the proteome of 134
organisms (Pe’er et al. 2004), and N(a(ci)) is the number of
codons assigned to that amino acid. The same results were found
when using estimated amino acid frequencies for early genetic
code development (Brooks et al. 2004), as well as when amino
acid frequencies were varied around their mean frequency with a
standard deviation of up to 70% of the mean. Adding correla-
tions between consecutive codons does not change the present
results (Supplemental material).

For each code we calculated the average logarithm of the
probabilities of all n-mer sequences. To avoid singularities, a
small number � was added to all probability values before taking
the logarithm (the results do not depend on �). The P-value is the
fraction of alternative codes for which the average logarithm of
all n-mer probabilities is higher than in the real code (Table 2).
Note that the average logarithm measure is appropriate to situa-
tions in which many n-mers need to be independently encoded,
so that the product of their probabilities is the biologically sig-
nificant parameter (e.g., distinct sequences within an RNA that
affect stability typically have an approximately multiplicative ef-
fect on the total stability of the RNA [Zuker and Stiegler 1981]).

In addition to an average of the logarithm of all n-mer prob-
abilities, for each alternative genetic code we calculated the arith-
metic average probability of obtaining the fraction x of n-mers,
sorted from the most difficult to the easiest (lowest to highest
probability). For every x, we assigned a P-value to the real code,
which is the fraction of alternative codes for which the average
probability of the x most difficult n-mers is equal or higher than
in the real code (Supplemental Fig. 4). Table 2 shows the P-value
for the average probability of obtaining the x most difficult n-
mers for different n-mer sizes, with x = 20%. The values of x for
which small P-values are found increases with the size of the
n-mers under consideration (see below).

The FDR method was used to determine the range of diffi-
cult n-mers for which the average probability in the real code is
significantly higher than in alternative codes, with a threshold
that corresponds to a false discovery rate of 15% (Supplemental
Fig. 4). For n > 8, the calculations were based on 105 randomly
sampled n-mers.

We find that in the real code, all sequences with n � 10 can
appear within protein-coding sequences, a feature shared by 37%
of the alternative codes. For n > 10, some sequences cannot ap-
pear, since they contain nonoverlapping stop codons in each of
the three reading frames (such as the 11-mer UAANUAANUAA).

The probability of encountering a frame-shifted stop
For each alternative code, we calculated the probability of en-
countering any one of the three stop codons following a frame-
shift event. For this we examined all of the possible 61 � 61
di-codon combinations. A frame-shifted stop upon a +1 transla-
tional frame-shift codon can be encountered at positions 2–4 of
a di-codon. A frame-shifted stop upon a �1 translational frame-
shift codon can be encountered at positions 3–5 of a di-codon.
The overall +1/�1 frame-shift stop probabilities were obtained
for each code by summing the probabilities of all di-codons con-
taining a stop signal at the appropriate position. Codon prob-
abilities were calculated from average amino acid probabilities

encountered in proteins of sequenced genomes (Pe’er et al. 2004)
and uniform codon usage (Table 1). The present results also apply
for a wide range of codon usages (Supplemental material).

Selection pressure of frame shift errors
A translational frame-shift event is estimated to occur at a prob-
ability of about 1/30,000 codons (Parker 1989; Farabaugh and
Bjork 1999). The average alternative genetic code encounters a
stop signal 23 codons on average after a frame-shift event (Fig.
3A), whereas in the real code a stop is encountered 15 codons on
average after such an event. It is believed that the number of
peptide bonds produced per unit time is one of the main selec-
tion pressures in growing microorganisms (Dekel and Alon 2005;
Wagner 2005a; Alon 2006). The real code “saves” about 23–
15 = 8 extra peptide bonds for each 30,000 translated peptide
bonds, conveying an advantage of 8/30,000∼2 � 10�4, and
hence, saving 0.02% of the peptide bonds made by the organism.
This relative fitness advantage is much higher than minimal se-
lectable fitness differences in microorganisms (Wagner 2005a),
which is on the order of 10�7 to 10�8. The reduction in length of
the frame-shifted peptide can also have additional beneficial ef-
fects, such as reducing potential toxicity of the nonsense peptide
and reducing the chances of misfolded protein aggregates. It is
possible that frame-shift errors could have been even more com-
mon in the early translation apparatus in which the genetic code
evolved (Woese 1998).
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