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SUMMARY

Bursts of nascent mRNA have been shown to lead
to substantial cell-cell variation in unicellular organ-
isms, facilitating diverse responses to environmental
challenges. It is unknown whether similar bursts and
gene-expression noise occur in mammalian tissues.
To address this, we combine single molecule tran-
script counting with dual-color labeling and quantifi-
cation of nascent mRNA to characterize promoter
states, transcription rates, and transcript lifetimes
in the intact mouse liver. We find that liver gene
expression is highly bursty, with promoters stochas-
tically switching between transcriptionally active and
inactive states. Promoters of genes with short mRNA
lifetimes are active longer, facilitating rapid response
while reducing burst-associated noise. Moreover,
polyploid hepatocytes exhibit less noise than diploid
hepatocytes, suggesting a possible benefit to liver
polyploidy. Thus, temporal averaging and liver poly-
ploidy dampen the intrinsic variability associated
with transcriptional bursts. Our approach can be
used to study transcriptional bursting in diverse
mammalian tissues.

INTRODUCTION

Gene expression in unicellular organisms and in mammalian cell
lines has been shown to be highly bursty (Blake et al., 2003,
2006; Chong et al., 2014; Dar et al.,, 2012; Bar-Even et al.,
2006; Friedman et al., 2006; Golding et al., 2005; Kaern et al.,
2005; Newman et al., 2006; Pedraza and Paulsson, 2008; Raj
and van Oudenaarden, 2008; Suter et al., 2011). Promoters
tend to stochastically transition between a closed, transcrip-
tion-prohibitive state and an open permissive state, generating
bursts of nascent transcripts. This bursting phenomenon can
generate intrinsic variability, or “noise,” in the mRNA content
of isogenic cells. In unicellular organisms such variability may
constitute a “bet-hedging” strategy, improving the chances
that a clonal population adapts to variable conditions (Chalancon
et al., 2012; Eldar and Elowitz, 2010).

An open question is whether single-cell variability is an advan-
tage or a disadvantage in tissues that maintain organismal
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homeostasis. Unlike unicellular organisms, cells residing in
homeostatic tissues coordinately function toward a common
physiological goal. One may think that gene expression in such
systems would be tuned to an optimal set point with minimal
variability among cells. Conversely, expression variability could
give rise to sub-populations of cells that can rapidly respond to
changing environmental stimuli. Such division of labor may be
advantageous for metabolic tissues that modulate their function
on a rapid timescale. The extent of bursty transcription and
expression variability in mammalian tissues has so far not been
explored.

Quantifying intrinsic variability in a tissue is challenging,
because tissues are highly heterogeneous and spatially struc-
tured. Tissues are often polarized by directional blood flow or
morphogenes and thus the physical location of a cell within the
tissue is a major extrinsic determinant of gene expression that
must be controlled for. The mammalian liver is a prime example
of these features. The liver is composed of repeating anatomical
units termed lobules, which are polarized by blood flowing from
an upstream “periportal zone” to a downstream “pericentral
zone” (Hoehme et al., 2010). These zones differ in the levels of ox-
ygen, nutrients, and hormones, as well as the expression levels of
genes (Jungermann and Kietzmann, 1996; Gebhardt, 1992;
Braeuning et al., 2006). An additional source of heterogeneity in
the liver is its polyploidy (Celton-Morizur and Desdouets, 2010;
Duncan et al., 2010; Pandit et al., 2013). The liver consists of a
mixture of hepatocytes with either one or two nuclei, where
each nucleus has 2, 4, 8, or 16 copies of each chromosome.
Thus, the liver is composed of multiple sub-populations distin-
guished by ploidy and tissue location. Fewer than 0.1% of hepa-
tocytes are cycling at any given time (Duncan 2013), and so the
contribution of cell-cycle stage to gene expression variability in
the liver can be neglected. Assessing intrinsic variability among
hepatocytes must take into account the key sources of heteroge-
neity in this tissue and focus on expression differences between
cells of identical ploidy residing at the same spatial zone.

Several techniques enabled inference of promoter bursting
kinetics from fluorescent reporters (Elowitz et al., 2002; Raser
and O’Shea, 2004; Suter et al., 2011) or single-molecule time-
lapse studies of promoter dynamics (Darzacq et al., 2007;
Larson et al., 2011); however, these are not suitable for intact
tissues. Single molecule fluorescence in situ hybridization
(smFISH) can identify mature as well as nascent transcripts of
endogenous genes (Raj et al., 2008; Zenklusen et al., 2008;
So et al.,, 2011; Boettiger and Levine, 2013; Itzkovitz et al.,,
2012; Little et al., 2013; Senecal et al., 2014) and has the
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Figure 1. Single Molecule Measurements of Intrinsic Variability in the Intact Mouse Liver
(A) Single molecule transcript counting enables controlling for ploidy and spatial location of cells. Red dots are single mRNA molecules of Pck1, blue are DAPI-
stained nuclei, and green is phalloidin membrane staining. PP, periportal zone. PC, pericentral zone. Scale bar is 30 um. Image is a maximal projection of 12

optical sections spaced 0.3 um apart.

(B) Magnified view of the boxed region in (A) showing polyploid hepatocytes with one or two nuclei, each with either two, four, or eight copies of each chro-

mosome.

(C) Hepatocytes of the same ploidy and tissue zone exhibit substantial intrinsic variability in gene expression. Blue bars are the distributions of the numbers of
Pck1 mRNA per cell in tetraploid hepatocytes in the pericentral zone. Red, theoretical probability distribution function (PDF) expected from a one-state non-
bursty model; green, distribution of a bursty two-state model. See also Figure S1.

potential of controlling for both cell type and physical locations of
cells within a tissue. Here we develop a methodology based
on smFISH to quantitatively characterize promoter states and
bursting properties of cells in intact mammalian tissues. We
find that bursty transcription is the common mode of gene
expression in the liver; however, tight coordination of transcrip-
tion and degradation as well as liver polyploidy reduce the
burst-associated noise.

RESULTS
Hepatocytes Exhibit Extensive Intrinsic Gene
Expression Variability

To assess the intrinsic variability in the expression of liver genes,
we imaged individual mRNA molecules in mouse liver frozen
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sections using smFISH (ltzkovitz et al., 2012; Lyubimova et al.,
2013) (Figures 1 and S1). We used simultaneous DAPI nuclear
staining and phalloidin membrane staining to assign mRNA
dots to individual cells. We developed an in situ ploidy classifica-
tion algorithm (Supplemental Experimental Procedures) that
enabled stratifying our single-cell mMRNA counts by both tissue
zone and ploidy class (Figures S1D-S1F). Strikingly, hepato-
cytes of the same ploidy level and at the same lobule zone ex-
hibited highly variable mRNA levels, spanning up to two orders
of magnitude (Figure 1C). Cellular mRNA distributions within
these apparently uniform populations were much broader than
expected based on a non-bursty one-state promoter model.
In contrast, they were well fitted by a two-state bursty model
(Supplemental Experimental Procedures; Figures 1C and 2A),
indicating that promoter bursting could be at play.



o

A E
§3000 
62000
nf-u| s
X =——"| g0t
kozvl ]kOFF ¥ ) 3,
IR
AVAVAYA NI AN
ooy s 1 5 2T
kON +kOFF o~ T g
N Qo
NN
B
introns exons

1 2 3 4 5 6 7 8 9 10
mRNA dot intensity (a.u.)

|

Alulshlls .y 8

7
TS dot intensity (a.u.)

Figure 2. Single Molecule Detection and Quantification of Bursting Promoters in the Intact Mouse Liver

(A) Two-state bursting model of gene expression. fis the fraction of promoters that are actively transcribing, u is the transcription rate from an active promoter, é is
the mRNA degradation rate, and n is the number of gene copies (ploidy). kon and koer are the rates of promoter opening and closing, respectively.

(B) Dual color labeling of introns and exons reveals active TSs. Red dots are Actb mRNA detected using a probe library targeting the exons. Green dots are pre-

mRNA detected using a probe library targeting the introns.

(C) Actb exhibits rare TSs with low transcription rate and stable mRNA (low f, u, and 6).
(D) Pck1 exhibits abundant intense TSs and high degradation rates (high f, u, and ¢). Outlined are two adjacent hepatocytes with substantial difference in

transcript counts. Arrowheads mark TSs.

(E) Ratio of intensities of exon dots at TSs to those of mature mRNA facilitates extracting polymerase occupancy and transcription rate (u). Shown are the
distributions of the exonic channel intensities of Pck1 for non-TS dots (top) and TS dots (bottom). Inset shows dot examples. Gray ovals represent Pol2 molecules;

green dots represent smFISH probes. See also Figures S2 and S3.

Dual-color Labeling of Introns and Exons Facilitates
Quantification of Promoter States, Transcription Rates,
and Transcript Lifetimes In Situ

The single-cell variability we observed in hepatocytes may not
necessarily be a result of promoter bursting. There could be addi-
tional extrinsic sources of variability other than physical location
and ploidy among the studied cell population. To directly link
variability to promoter bursting, we therefore sought to develop
a method that would enable unambiguous identification and
quantification of promoter states and transcription rates in situ
(Figure 2A). To this end, we designed a second smFISH probe
library coupled to a different fluorophore, targeting the intron
gene segments. Introns are spliced and degraded co-transcrip-
tionally (Levesque and Raj, 2013; Vargas et al., 2011) and indeed
intronic probe libraries yielded dots, which resided only in the
nucleus (Figures 2B-2D). The number of double-labeled dots
was smaller or equal to the expected number of loci, estimated
from our ploidy classification. These dots disappeared following

actinomycin D treatment (Figure S2), demonstrating they are
indeed active transcription sites (TSs). Thus, the fraction of
actively transcribing promoters (“burst fraction,” denoted by f;
Figure 2A) could be readily computed from the ratio of the dou-
ble-labeled nuclear dots and the expected number of gene loci.

We next calculated the number of nascent mRNA residing
at each TS, as the ratio of intensities of the exonic TS dots to
the intensity of cytoplasmic dots, representing single mRNA (Fig-
ure 2E) (we included a correction factor for the physical spread
of the library along the gene; Supplemental Experimental Proce-
dures; Figure S38). Using intensity ratios of probe libraries target-
ing both ends of the gene, we demonstrated that >85% of
nascent mRNAs at TSs are attached to actively transcribing
polymerase molecules (Figure S3). Thus, the number of nascent
mRNA can be used as a proxy for polymerase occupancy (M).
We next used polymerase occupancy to infer the transcription
rate u, the average rate of mRNA production from an active
TS, using the equation u=M-v/L, where L is the length of the
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Figure 3. Distributions of Cellular mRNA
Content and of Polymerase Occupancies
Fit a Two-State Bursty Model

Left plots for each gene are the probability distri-
bution functions (PDFs) of the number of cyto-
plasmic mRNA per cell; right plots show the PDF of
Pol2 occupancies (M). Red is a one-state non-
bursty model fit; green is a two-state bursty model
fit. Both distributions show a better fit to a two-
state bursty model for all genes (Table S1 provides
mean square errors of the model fits). All data is for
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gene and v = 34 + 11 bp/s is the polymerase speed, which we
calibrated using actinomycin D treatment (Experimental Proce-
dures). Finally, we computed the transcript degradation rate
o as the ratio of summed cellular TS transcription rates and total
number of cytoplasmic mMRNA. We verified our estimates by
tracking mRNA decline following cessation of transcription via
actinomycin D treatment (Supplemental Experimental Proce-
dures), yielding estimate errors of 15%. Thus, our approach
enabled measurement of all gene expression parameters (Fig-
ure 2A)—the fraction of time a promoter is actively transcribing
(burst fraction, f), the transcription rate from an active promoter
state (u), and the mRNA degradation rates (¢), in addition to the
total cellular mRNA levels.

Liver Genes Are Expressed in Transcriptional Bursts

We applied our measurements to nine liver genes, the gluconeo-
genic genes Phosphoenolpyruvate carboxykinase 1 (Pck1) and
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model (Figure 3). A notable exception
Pol2 occupancy

that exhibited non-bursty transcription
was Glul, for which all gene loci were tran-
scriptionally active (Figure S4A).

The numbers of active TSs per cell were binomially distributed
among cells for all genes studied (Figure S4B), indicating inde-
pendent bursting. Moreover, combinatorial labeling (Levesque
and Raj, 2013) of TSs for Pck1 and G6pc, two functionally related
gluconeogenic genes, revealed non-correlated bursting, further
supporting intrinsic variability as the source of the differences in
gene expression among hepatocytes that reside in the same tis-
sue zone (Figures S4B and S4C). We used the independent
bursting feature to extend a previous analytical two-state pro-
moter bursting model (Raj et al., 2006) to multiple alleles (Supple-
mental Experimental Procedures). This enabled inference of the
absolute rates of promoter transitions between an ON and OFF
state (Figures 2A and 3; Table S1). We find that burst parameters
differ widely between genes, ranging from intense frequent
bursts for Pck1 (f = 0.73, M = 17 Pol2/TS, kon=0.65hr1,
korr =0.24hr=1) to rare and weaker bursts for Actb (f = 0.03,
M = 5 Pol2/TS, kony=0.08hr"| korr =2.2hr~"; Table S1).
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To assess whether the bursty gene expression observed is
unique to the liver, we repeated our measurements on an addi-
tional metabolic tissue—the mouse small intestinal epithelium.
We found that most genes were expressed in transcriptional
bursts in this tissue as well (Figure S5). Actb was expressed in
a non-bursty manner in the intestine, and in a bursty manner in
the liver, whereas Glul, which was non-bursty in the liver, ex-
hibited bursty transcription in the intestine (Figure S5).

Burst Fraction and Transcript Degradation Rates Are
Tightly Correlated to Enable Rapid Response while
Minimizing Noise

Different combinations of burst fraction, transcription rate, and
mRNA stability can achieve a required level of cellular mRNA
with differential impact on features such as noise and response
time (Rabani et al.,, 2011; Schwanhausser et al., 2011). For
example, coordinated high transcription and degradation facili-
tates rapid changes in gene expression but can increase intrinsic
noise stemming from promoter bursting (Figure 4A). Increasing
burst fraction coordinately with degradation rate can dampen
the increase in noise. Indeed, we find a tight positive correlation
between burst fraction and degradation rate for all genes and
conditions studied (R=0.78,p=2.2-10"%, Figure 4B). Thus,
genes that should respond fast tend to be less bursty than

Burst fraction (f)

observe for the bursty genes could be a
mechanism for minimizing burst-associ-
ated noise through temporal averaging
of the stochastic burst events.

To further explore noise-response tradeoffs in liver gene ex-
pression parameter space, we performed our measurements on
Pck1and G6pc, the key genes controlling hepatic glucose output,
infed, fasting, and refed mice. These conditions have been shown
to lead to drastic changes in mRNA levels for these genes (Geb-
hardt, 1992; Jungermann and Kietzmann, 1996). We find that
Pck1 and G6pc are upregulated in fasting conditions through a
coordinate increase in both transcript production (8=n<f-u)
and degradation rates (6) compared to a high-fed state (Figures
4C and 4D). High degradation rates enable a rapid decline in
transcript numbers aftera 1 hr period of refeeding (Figure 5). Inter-
estingly, the increased transcript production is mainly a result
of an increase in burst fraction (f, 10-fold increase for G6pc and
40-fold increase for Pck1; Table S1) and a more modest increase
in transcription rate (u, 1.4-fold for G6pc and 6-fold for Pck1;
Figure 4D; Table S1). The increase in transcript production rate
predominantly via increased burst fraction is consistent with a
strategy of minimizing burst-associated noise (Figure 4A).

0.6 0.8 1

High mRNA Degradation Rates of G6pc Impact Protein
Dynamics, mRNA Intra-Cellular Localization, and
Correlations of mRNA Content with Transcription Rates
Our in situ measurements indicated that the gluconeogenic gene
G6pc has a particularly short transcript lifetime of ~20-30 min
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Figure 5. Elevated mRNA and Protein Degra-
dation Rates Facilitate Rapid Decline in
mRNA and Protein Levels for G6pc over 1 hr
(A and B) G6pc mRNA (red dots) in mice fasted for
5 hr before (A) and after (B) 1 hr of refeeding.
Arrowheads mark TSs. Scale bar is 5 um.

(C) Decrease in transcription rate (left), cytoplasmic
mRNA concentration (middle), and protein con-
centration (right) over an hour of refeeding.

(D) Representative western blot for GBPC protein
used to calculate the decline in GBPC protein levels
presented in (C). a-Tubulin (bottom) was used as a
loading control. Data are represented as mean =+
SEM. See also Figure S6.
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(Figures 4B and 5; Table S1). To assess the impact of this feature
on protein content, we measured G6PC protein levels before
and after 1 hr of refeeding. Strikingly, we observe not only an
almost complete shutdown of transcription and a decline of
~70% in mRNA concentrations, but also a decline of ~60% in
protein concentrations over this period (Figures 5C and 5D).
This decline indicates that G6PC protein is also highly unstable
under these conditions (protein half-life of 10-45 min, depending
on whether translation rates change; Supplemental Experi-
mental Procedures). This half-life is particularly short, consid-
ering that median protein half-lives are on the order of 50 hr in
mammalian cells (Schwanhdusser et al., 2011).

Transcripts of G6pc also exhibited non-random localization
of mRNA with the majority of mMRNAs spatially clustered around
the nucleus (Figure S6A). Considering previous estimates of
mRNA diffusion rates of ~0.03 um?/s (Vargas et al., 2005),
this clustering could suggest that the mRNA lifetime for this
gene may be smaller than the diffusion time within the large
hepatocyte volume. At the single-cell level, we observed sig-
nificant correlation between cellular transcription rates and
mRNA levels for unstable transcripts such as G6épc, but not
for stable transcripts such as Actb (Figures S6B and S6C).
The levels of short-lived mRNA are expected to track the
instantaneous promoter activity more tightly compared to
long-lived mRNA, supporting our estimates for mRNA lifetimes
(Taniguchi et al., 2010). Thus, mRNA degradation rates impact
the cellular localization of transcripts in hepatocytes, as well as
the correlations between instantaneous transcription rates and
cellular mRNA levels.

Hepatocyte Polyploidy Reduces Gene Expression Noise

Unlike most tissues in our body, which consist of mono-
nucleated cells with diploid genomes, the liver is a polyploid
tissue, consisting of hepatocytes with either one or two nuclei
where each nucleus has either two, four, eight, or 16 copies
of each chromosome. This feature is highly ubiquitous with
more than ~85% of hepatocytes harboring more than two

152 Molecular Cell 58, 147-156, April 2, 2015 ©2015 Elsevier Inc.

observation of independent promoter

bursting (Figure S4) suggested that poly-
ploidy could serve as an additional mechanism to reduce
burst-associated noise.

The noise reduction potential of polyploidy could be under-
stood by considering the distinct effects of polyploidy on aver-
ages and variability of mRNA concentrations. A tetraploid
hepatocyte has twice the number of copies for each gene
compared to a diploid hepatocyte, as well as twice the volume
(Pandit et al., 2013); hence, the average mRNA concentration
should be the same if there is no ploidy-specific regulation. In
contrast, variability between the cytoplasmic concentrations
among tetraploid cells should be lower than for diploid cells
due to the averaging of more stochastic, independent events
(Figure 6; Supplemental Experimental Procedures). Indeed, for
eight out of ten genes and conditions for which median mRNA
concentrations were not significantly different between diploids
and tetraploids, the coefficients of variation (C.V.) of the concen-
trations were significantly lower in tetraploid cells compared to
diploid cells (Fisher’s combined probability p < 107" for all
genes tested, median reduction of 13% in C.V.), and no gene
had a statistically significant higher C.V. in tetraploids (Figure 6C).
These results suggest that polyploidy may be an additional
mechanism that could serve to reduce gene expression noise.

DISCUSSION

Our work provides direct evidence of bursty gene expression
in intact mammalian tissues. We found that liver promoters
stochastically switch between transcriptionally active and inac-
tive states, generating intrinsic variability between cells that are
considered identical in terms of ploidy and tissue location. Inter-
estingly the liver seems to possess features that can dampen this
variability, through temporal averaging and polyploidy. These
two mechanisms effectively increase the number of stochastic
transcriptional burst events that contribute to cellular mRNA
levels.

We found that mRNA lifetimes of the more bursty genes, the
ones that are transcriptionally active for shorter periods, tend



Figure 6. Tetraploid Hepatocytes Have

Reduced Gene-Expression Noise Com-
pared to Diploid Hepatocytes

(A) Examples of Actb expression among diploid
cells (left) and tetraploid cells (right). Cell outlines
(white dashed lines) are based on phalloidin
membrane staining. Scale bar is 5 um.

°, (B) Probability distribution function of mMRNA con-
.0. centrations in diploid (gray) and tetraploid (black)
T. hepatocytes for Actb in the periportal zone of a
.. 5-month-old mouse in a fed state. Coefficients of

o variation (C.V.s) are 0.35 for diploids and 0.28

for tetraploids.
(C) Single-cell variability in cytoplasmic mRNA
concentrations are smaller in tetraploid (4n) hepa-
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to be longer, reducing the burst-associated variability through
temporal averaging. As a result of this tight correlation between
mRNA degradation rates and burst fractions, gene expression
parameter space (the 3D space spanned by burst fraction,
transcription rate, and degradation rate) is relatively sparse
(Figure 4B). If the liver evolved strategies to reduce noise, what
then could be the functional advantage of bursty transcription
in this tissue? Non-bursty transcription, consisting of open
chromatin continuously transcribing mRNA, would have been
more effective than bursty transcription in reducing variability.
One possible advantage of the bursty transcription observed
could be protection of “closed” DNA from damage, a feature
that has been previously attributed to nucleosome structure
(Chen et al., 2012). Such protection could be particularly impor-
tant given the detoxification roles of the liver. An additional
advantage of reducing the amount of accessible DNA may be
the minimization of misbinding events of transcription factors
(Shinar et al., 2006).

The liver is a polyploid tissue containing either mono-nucle-
ated or bi-nucleated cells where each nucleus contains two,
four, eight, or 16 chromosomal copies. The benefits of polyploidy
to mammalian cells in general, and particularly for the liver,
remain unclear (Duncan 2013; Pandit et al., 2013; Storchova
and Pellman, 2004; Tang and Amon, 2013). Existing theories
include the ability to harbor backup copies of genes to protect
cells against mutations. Other advantages could include the
higher biosynthetic capacity of polyploid cells, supporting a
larger cell size, the ability to generate functional diversity (Dun-
can et al., 2010), and the ability to modulate surface to volume
ratios (Storchova and Pellman, 2004). Our work uncovered
an additional possible benefit of polyploidy-reducing gene
expression noise. Tetraploid hepatocytes have twice the number
of gene copies as well as twice the volume as diploid hepato-
cytes, and indeed, we find that the average expression of genes
in diploid and tetraploid hepatocytes is mostly unchanged
(Figure 6). In contrast to the average expression, variability of
mRNA concentrations tends to be lower in tetraploid hepato-

tocytes compared to diploid (2n) hepatocytes. Every
dotis a genein one of the conditions studied; shown
are the ratios of mean cytoplasmic concentration
(blue) and C.V. (green). All genes and conditions
analyzed had mean concentrations that were not
significantly different, and eight out of these ten
genes had significantly lower C.V.s. in tetraploids.

Conc. C.V.

cytes compared to diploid hepatocytes. This effect can be
achieved by spatially averaging more stochastic burst events
per cell. Similar spatial averaging effects have been demon-
strated in a polyploid mutant of Bacillus subtilis (Stel et al.,
2007) and in Drosophila embryos, which are syncytia containing
multiple nuclei (Little et al., 2013). Liver polyploidy increases with
age (Celton-Morizur and Desdouets, 2010), as does single-cell
variability (Bahar et al., 2006). An intriguing hypothesis is that
liver polyploidization may counteract the noise increase caused
by genes becoming burstier with age. Examining the relation
between polyploidy and gene expression noise in liver aging,
in liver pathology, and in other polyploid tissues such as heart
and muscles could provide important insight into the role of
this enigmatic feature of mammalian tissues. Measuring the
impact of hepatocyte noise on the performance functions of
different liver metabolic tasks and comparing metabolic perfor-
mances in mouse models with perturbed polyploidy (Pandit
et al., 2012) can reveal the functional significance of the noise
reduction feature of liver polyploidization described in this study.

The liver switches between two distinct modes in terms of
glucose metabolism—a glucose absorber following a meal and
a glucose producer in between meals. Much of the control of
this process is achieved by modulating mRNA levels of the
gluconeogenic genes Pckl1 and G6pc, the expression levels
of which are high in a fasting state and low following a meal.
Changes in the expression levels of these genes can be achieved
by modulating burst fraction, transcription rate, degradation
rate, or any combination of these three key features. We found
that the higher levels of gluconeogenic genes in a fasting state
are achieved via an increase in both transcription and degrada-
tion compared to a fed state. The increase in degradation rate
comes at a price, as it requires excessive energy expenditure
for transcription and accentuates burst-associated noise. A
possible explanation for the elevated degradation rates during
fasting may lie in the fact that the transition from a fasting to a
fed state is rapid, as blood glucose levels rise following a meal
within minutes. Upon feeding, it may thus be important to shut
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down hepatic glucose output as fast as possible, and indeed, for
G6pc, the high degradation rates facilitate rapid reduction in
both mRNA and protein levels following refeeding (Figure 5). In
contrast, the transition from a fed to a fasting state takes hours,
as metabolites are gradually depleted from the circulation, and
thus, in a fed state maintaining high mRNA degradation rates
(the determinant of response time) may be less important.
It will be interesting to explore the mechanisms that facilitate
the rapid reduction in mRNA and protein levels during refeeding.
Possible regulatory candidates may include microRNA, which
have been shown to have important roles in maintaining liver
zonation (Sekine et al., 2009).

Our approach for measuring all gene expression parameters,
namely burst fractions, transcription rates, and degradation
rates in single cells within intact tissues opens new avenues
for exploring the design principles that may have shaped
gene expression parameter space. This approach can reveal
the extent of transcriptional bursts and gene expression noise
in diverse mammalian tissues.

EXPERIMENTAL PROCEDURES

Mice and Tissues

All animal studies were approved by the Institutional Animal Care and Use
Committee of WIS. C57bl6 male mice age 5 months were fed normal chow
ad libitum, fasting or refed for the indicated times. Mice were sacrificed at
6AM (high-fed state), 9AM (fed state), and 12 PM (fasting state, for these
mice food was removed at 8AM). In the refeeding experiment (Figure 5),
mice were housed under reverse phase cycle and fasted for 5 hr starting at
7AM. Mice were then refed ad libitum for an hour and sacrificed either before
refeeding (two mice) or after refeeding (two mice). Mice were anesthetized and
tissues were harvested and fixed in 4% paraformaldehyde for 3 hr, incubated
overnight with 30% sucrose in 4% paraformaldehyde, and then embedded in
OCT. 25 um cryosections were used for hybridization of liver tissue, and 12 um
sections were used for intestinal tissue.

Hybridization and Imaging

Probe library constructions, hybridization procedures, and imaging conditions
were previously described (ltzkovitz et al., 2012; Lyubimova et al., 2013). To
detect cell borders alexa fluor 488 conjugated phalloidin (Rhenium A12379)
was added to the GLOX buffer wash. Portal node was identified morphologi-
cally on DAPI images based on bile ductile; central vein was identified using
smFISH for Glul performed on serial sections. Hepatocytes within the first
three layers of the portal node (up to ~50 pm distance) were classified as
periportal. Hepatocytes in layers 2-4 from the central vein (~70 pm distance
from central vein) were classified as pericentral. We excluded the innermost
lobule layer that is directly bordering the central vein, since hepatocytes in
that layer exhibited distinct expression levels. All results presented in the paper
are for tetraploid (4n) hepatocytes, with the exception of the polyploidy anal-
ysis (Figure 6).

Data Analysis

Ploidy classification was based on the 3D nuclear dimension reconstruction,
based on DAPI images. Validation of the classification was done with an
smFISH probe for Xist on livers of female mice (Figure S1E). TSs were identified
as dots that appeared in both the exon and intron probe channels. Exon
dot intensity was used to infer the number of nascent mRNA at each TS. To
calibrate Pol2 speed, we imaged genes in NIH 3T3 cells before and at different
time points following actinomycin D treatment. Burst fraction and transcrip-
tion rate were measured before treatment, and degradation rates were
measured based on the reduction in mRNA levels following treatment and
used to fit a single missing variable—Pol2 speed (Supplemental Experimental
Procedures).
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Fitting Bursting Models to the Measured Distributions

To fit our measured mRNA distributions (Figure 3), we extended the analyt-
ical results of Raj et al. (2006) to multiple gene copies by convolving the
mRNA distributions predicted for a single gene copy. This extension is based
on the independent bursting property observed, where the probability of
each promoter to be in a transcriptionally active state is independent of
the states of other promoters in the cell (Figure S4B). In our fits, we used
the measured burst parameters (f, u,6), leaving a single free fit parameter
(kons, since f=kon/(kon +kore)). A Poisson distribution was used for the
mRNA distributions under the one-state model. For both the one-state and
two-state model fits, we included a correction for the broadening effect
caused by volume subsampling, namely counting mRNA dots only in a partial
volume of the cell rather than the entire cell (Supplemental Experimental
Procedures).

Polymerase occupancies for both one-state and two-state models were
fit with Poisson distributions. Importantly, while for the two-state model
we used the measured mean pol2 occupancy of the active TS as the
Poisson parameter (M), in the one-state model, the Poisson parameter
(M) was obtained from the burst fraction (M)= —log(1 —f), where f is
the fraction of double-labeled dots (TSs), since under a one-state model
the fraction of genes where active transcription is not observed is
1 —f=e M, The distributions of polymerase occupancies were convolved
with a broadening kernel measured based on the intensities of individual
mRNA dots (Supplemental Experimental Procedures). Mean squared errors
were based on cross validations to avoid over-fitting (Supplemental Exper-
imental Procedures).

Comparing Noise Properties of Different Ploidy Classes

To quantify variability in cytoplasmic concentrations between different ploidy
classes, we counted the number of mMRNA molecules in ten consecutive
z stacks in a cytoplasmic rim surrounding the nucleus with a fixed volume
of 500 um?®. This ensures that variability in concentration will not stem from
variability in segmented volumes.

To compare averages and noise of cytoplasmic mRNA concentrations
between diploids and tetraploids, we considered only genes and conditions
for which at least 15 cells were counted from each ploidy class and for
which mean mRNA concentration was not significantly different between
the ploidy classes (using Wilcoxon rank-sum tests and false discovery rate
of 15%). To ensure comparison of C.V.s of sets of equal lengths of diploids
and tetraploids, we sampled 1,000 sets of n cells from the tetraploid class
(where n is the number of cells in the diploid class, invariably the smaller
class of cells for the tissues studied), recalculated C.V., and computed
p values as the fraction of 1,000 resampled tetraploid sets that yielded a
higher C.V. than the diploid set. False discovery rate of 15% was used to
control for multiple hypothesis testing. Fisher’'s method was used to obtain
a combined p value.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, two tables, and Supplemental
Experimental Procedures and can be found with this article online at http://
dx.doi.org/10.1016/j.molcel.2015.01.027.
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Figure S1 (Related to Figure 1) Single molecule gene expression measurements in
the intact liver control for spatial zonation and polyploidy. (A) Transcript counting of
Pck1 in the intact liver lobule. Each red dot is a mRNA molecule of Pckl, blue square
highlights the periportal zone (PP), brown square highlights the pericentral zone
(PC). (B) Heat map of gene expression in A. (C) calculation of the concentration of
mRNA in different layers around the central vein. Boxes highlight the pericentral and

and periportal zones. (D) Histograms of nuclear diameters extracted from the



maximal DAPI cross-section. (E) smFISH for Xist RNA (red dots). Each dot represents
an inactive X-chromosome. Shown is an example of an octoploid hepatocyte, with
two tetraploid nuclei, each with 2 inactive X chromosome loci. (F) Representative
profiles of DAPI area at different optical sections (Z-stack) for bi-nucleated
hepatocytes. Blue and Red are the two nuclei profiles. Left — a tetraploid hepatocyte

(2 diploid nuclei). Right — an octoploid hepatocyte (2 tetraploid nuclei).
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Figure S2 (Related to Figure 2) Actinomycin-D treatment. (A) Images of NIH-3T3 cells
before Actinomycin-D treatment (left column) and at different time points following
3ug/ml Actinomycin-D (middle and right columns). Red dots are P21 introns, green
dots are P21 exons. (B) Estimating P21 degradation rate. Shown are the natural
logarithms of the number of mRNA dots per cell per stack before and at different
time points after Actinomycin-D treatment. The slope of log(P21 expression) vs. time
is 0.3740.12 hr'". (C) Intronic dots of P21 rapidly disappear following actD treatment.

Y axis shows the number of TS per nucleus.
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Figure S3 (Related to Figure 2) Split probe libraries demonstrate that most mRNA
molecules at transcription sites are attached to actively transcribing polymerases. (A-
B) diagrammatic representation of the probe libraries used. (C) Intensities of
representative TS coupled to L1-a594 and L3-cy5 at the corresponding channels. Cy5
intensity is higher than a594 due to the fluorophore properties. (D) Intensities of
representative TS coupled to L1-a594 and L2-cy5 at the corresponding channels. Cy5
intensity in (D) is lower than in (C), indicating that most Pol2 molecules are spread
along the gene and not pausing at the 3’ end. Surface heights in (C-D) are the dot

intensities in the optical section of maximal intensity. (E) Ratio of the intensities in



the alexa594 channel and the cy5 channel for the L1/L3 experiment (blue), and the
L1/L2 experiment (green). Red dots are the intensity ratios of L1/L3 multiplied by the
theoretical ratio of equation [15] with F=0.86. (F) Gene lengths and Probe spread

correction factors for the genes studied.
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Figure S4 (Related to Figure 3) Liver promoters burst in a non-correlated manner.

(A) Glutamine Synthetase (Glul) exhibits non-bursty transcription in liver tissues.

Shown are 6 representative Z-sections out of a total of 45 imaged stacks, spaced

0.3um apart. Green dots are Xist loci marking inactivated X chromosomes, nuclear



red dots are TS of Glul, blue are nuclei marked with DAPI. Dashed lines mark nuclei,
solid lines mark cells. Three cells for which the entire nucleus appeared in the entire
Z-stack are shown - cell a is a mono-nuclear diploid cell showing 1 Xist locus and 2 TS
of Glul, cell b is a bi-nucleated tetraploid cell (two diploid nuclei) in which each
nucleus exhibits 1 Xist locus and 2 TS of Glul, cell ¢ is a mononuclear tetraploid cell
exhibiting 2 Xist loci and 4 TS of Glul. (B) The numbers of active transcription sites
(TS) per cell are binomially distributed. Blue bars are experimental measurements;
green is a binomial distribution with parameter f, the mean fraction of active TS per
site. Data is for tetraploid hepatocytes in the periportal zone. (C) Combinatorial
smFISH demonstrates independent bursting of Pck1 and G6pc. Transcription sites for
Pckl (red arrows) were detected using probes targeting Pckl introns labeled with
tmr and probes targeting Pckl exons labeled with alexa594. Transcription sites of
G6pc (green arrows) where detected using probes targeting Gépc introns labeled
with tmr and probes targeting G6pc exons labeled with cy5. Although hybridization
was performed with two distinct libraries labeled with the same fluorophore (Pckl
and G6pc introns, left), TS for these genes could clearly be detected and quantified
based on the appearance of double-labeled dots. Circles denote the nuclei of two
adjacent cells (differentiated based on co-staining with Phalloidin, not shown). The
number of TS per nuclear volume and the summed occupancies of all TS divided by
nuclear volume were not significantly correlated between G6pc and Pckl (R=0.29,

p=0.17 and R=0.25, p=0.24 respectively). Experiments were done on fasting mice.
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Pck1 Villus 4.7 0.39 92.2 7.8 0.113 0.0020 0.031 0.0051 0.0674 0.0017
G6pc Villus 85 0.86 102.0 104 0.772 0.0130 0.027 0.0035 0.096 0.0095
Insr Villus 38 1.54 3.6 1.5 0.005 0.0003 0.003 0.0006 0.0396 0.0182
Glul Crypt 4.6 0.58 57.5 7.3 0.062 0.0020 0.007 0.0013 0.0836 0.005
Acly Crypt 3.7 0.29 8.9 0.7 0.037 0.0010 0.049 0.0175 0.0329 0.0027
Actb Crypt 1.4 0.09 47.3 3.1 0.262 0.0050 0.216 0.038 0.0011 0.0058

Figure S5 (Related to Figure 3) Bursty gene expression in the intestinal epithelium.
(A) Most genes in intestinal epithelial cells exhibit rare transcription sites (TS) with
high Pol2 occupancies that cannot be explained by a non-bursty transcription model.
Red dots — mRNA for Pckl detected with an exon library, blue — DAPI nuclei. Boxed
region is magnified on the right, showing single TS with occupancy of 7 Pol2
molecules (yellow arrowhead) at the exon (top), intron (middle) and DAPI (bottom)
channels. Scale bar is 5um. Arrow points at a nucleus of a goblet cell. (B) All genes
except Actb fit a 2-state bursty model (green) rather than a 1-state non-bursty model
(red). For Actb Pol2 occupancies better fit a 1-state model. (C) Burst parameters for

the genes studied in the intestinal epithelium.
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Figure S6 (Related to Figure 5) Gluconeogenic genes exhibit high degradation rates

generating non-random intra-cellular mRNA localization and correlations with

transcription rates. (A) Liver genes with short-lived mRNA are clustered around the

nuclear periphery. Green dots are G6pc transcripts (left) or Actb transcripts (right).

Bottom plots show the histograms of distances of cytoplasmic mRNA to the nuclear

periphery. (B-C) Highly unstable genes exhibit positive correlations between cellular

transcription rate and mRNA concentrations. (B) G6pc in pericentral zone in fasting

state, Rspearman=0.51, p=0.001 (6=1.24 hr'l), (C) Actb in periportal zone in fed state,

Rspearman=0.10, p=0.37 (6=0.02 hr'!). Every dot in panels B-C is a cell, x-axis is the

summed transcription rate from all active TS divided by the cellular ploidy, y-axis is

the cellular concentration of mRNA.



Table S1 Burst parameters for the different genes and conditions studied in the liver.
M - Polymerase occupancy. i - Transcription rate. § - Transcript degradation rate. f -
burst fraction. kon, korr - Rates of promoter transitions between ON and OFF
states. MSE — mean square errors between the experimental distributions and the
model fits (averages of 100 cross-validation runs). MSE are shown for both the
distributions of cytoplasmic mRNA per cell and the distributions of polymerase

occupancies per transcription site. PP — Periportal, PC — Pericentral.

Table S2 Sequences of the probe libraries.



Extended Experimental Procedures

1. Mice and imaging

Mice and tissues

All animal studies were approved by the Institutional Animal Care and Use
Committee of WIS. C57bl6 male mice age 5 month were fed normal chow ad libitum,
fasted or re-fed for the indicated times. Mice were sacrificed at 6AM (high-fed
state), 9AM (fed state) and 12 PM (fast state, for these mice food was removed at
8AM). In the re-feeding experiment (Figure 5) mice were housed under reverse
phase cycle, and fasted for 5 hours starting at 7AM. Mice were then re-fed ad libitum
for an hour and sacrificed either before refeeding (2 mice) or after refeeding (2
mice). Validation of ploidy classification using Xist was performed on female mice of
age 2 months. All mice were anesthetized with an intraperitoneal injection of a
mixture containing 100 mg/kg ketamine and 10 mg/kg xylazine. Liver tissues were
harvested and fixed in 4% paraformaldehyde for 3 hours; incubated overnight with
30% sucrose in 4% paraformaldehyde and then embedded in OCT. 25 um
cryosections were used for hybridization. To examine bursty gene expression in the
intestinal epithelium mouse duodenum was harvested from 5-month old male mice
fasted for 5 hours prior to sacrifice. 12 um cryosections were used for hybridizations.
Six out of the nine genes studied in the liver were also expressed in the intestine —
Insr, G6pc, Glul, Pckl, Acly and Actb and were quantified either in crypts or villi,
depending on the zone in which they were more highly expressed. For the gene Actb
expression was too high in the villi to resolve individual mRNA molecules, and

therefore quantification was done on its expression in crypts.

Hybridization and imaging

Probe libraries were designed and constructed as previously described (ltzkovitz et
al., 2012). Single molecule FISH probe libraries consisted of 44-96 probes (Table S2)
of length 20 bps, and were coupled to cy5, alexa594 or tmr. Hybridizations were
performed overnight in 30°C. Typical hybridization mixtures included exon library in
cy5, intron library in tmr and Actb library in alexa594. DAPI dye for nuclear staining

was added during the washes. To detect cell borders alexa fluor 488 conjugated



phalloidin (Rhenium A12379) was added to the GLOX buffer wash. Images were
taken with a Nikon Ti-E inverted fluorescence microscope equipped with a x100 oil-
immersion objective and a Photometrics Pixis 1024 CCD camera using MetaMorph
software (Molecular Devices, Downington, PA). The image-plane pixel dimension
was 0.13 um. Quantification of transcription sites and nuclear volume were done on
stacks of 45 optical sections in the liver and 30 optical sections in the intestine, with
Z spacing of 0.3 um, whereas quantification of the mRNA concentrations was done
on the first 10 optical sections. Portal node was identified morphologically on DAPI
images based on bile ductule, central vein was identified using smFISH for Glutamine
Synthetase performed on serial sections. Hepatocytes within the first three layers of
the portal node (up to ~50 um distance) were classified as periportal and
hepatocytes within the first four layers of the central vein (~60um distance), but
excluding the innermost layer were classified as pericentral. This exclusion stems
from distinct expression levels which we often observed in the innermost layer
directly bordering the central vein. All results presented in the paper are for
tetraploid (4n) hepatocytes, with the exception of the polyploidy analysis, which

compared diploid and tetraploid cells (Figure 6).

Cell culture and Actinomycin-D treatment

NIH 3T3 cells were grown in Dulbecco's modified Eagle medium (DMEM)
supplemented with 10% fetal calf serum (FCS), penicillin (200 1.U./ml) and
streptomycin (100 pg/ml) at 37°C with 5% CO2 and split every three days. A day prior
to Actinomycin-D treatment 200,000 NIH 3T3 Cells/well were seeded in a 24 well
plate. Actinomycin-D (Sigma, A9415-2MG) was resuspended in DMSO with a final
concentration of 2 mg/mL. Actinomycin-D was thoroughly mixed with the growth
medium (3 pug/ml) and added on the cells. Cells were harvested at 0, 1.5, 3, 4.5 and 6
hours and immediately fixed in 4% paraformaldehyde for 15 minutes. Cells were
then washed once with PBS and incubated in ethanol for at least two hours at 4°C.

The number of nascent and mature mRNA was determined by smFISH.

Western blot analysis



Liver tissues (~150 mg) were homogenized in ice-cold RIPA buffer (R0278, Sigma)
supplemented with protease inhibitors (P8340, Sigma). Protein samples (60 pg) were
separated on 12% reducing polyacrylamide gels and electroblotted. Immunoblots
were blocked and incubated overnight at 4°C with G6PC antibody (sc-25840, Santa
Cruz) or Monoclonal Anti-a-Tubulin (T9026, Sigma) as a loading control. Blots were
visualized by chemiluminescence using an ECL kit (Thermo). Quantifications were
performed using the ImageQuant Las 4000 mini luminescence image analyzer (GE

Healthcare) and Fiji software.

2. Ploidy classification algorithm

In this section we describe our algorithm for hepatocyte ploidy classification. We
developed an image-processing algorithm implemented in MATLAB to infer ploidy
from nuclear dimensions and validated it with smFISH for Xist, expressed from
inactive X chromosomes in female.

Cell borders were manually marked for all hepatocytes in an image field
based on FITC-Phalloidin membrane staining and DAPI nuclear staining. For bi-
nucleated hepatocytes a line was manually drawn between the two nuclei to assist
in automatic nuclear detection. Otsu’s method was next used to threshold the three
dimensional image stack of each segmented cell. For each optical section within the
3D image stack a spherical structuring element, the size of the thresholded object
was convolved with the binary image and the area of the resulting binary object was
calculated. The resulting 3D profile of the DAPI cross-sectional areas at each Z, A(Z)
was used to extrapolate the maximal cross-sectional area. This facilitated inference
of nuclear size even if the 3D stack did not include the entire nucleus. Assuming a
nucleus of radius R, the cross-sectional area A(Z) at stack Zis:

[1]1 A(Z) = nr(Z)? = (R* — (R — Z)?) = —nZ? + 2nRZ
Where r(Z) is the radius of the cross-sectional circle at stack Z and R is the radius of
the nuclear sphere.

We fit a parabola to each DAPI cross section profile and extrapolated the
maximum cross-area. We manually selected thresholds that separated the resulting
multimodal distribution (Figure S1D). To validate our ploidy classification method we

next performed an smFISH experiment on frozen sections of female mouse liver with



an Xist probe. The number of nuclear dots correlated with the nuclear ploidy levels,
with diploid nuclei exhibiting 1 dot, tetraploid nuclei exhibiting 2 dots etc. (Figure

S1E). The ploidy classification error was <10%.

3. Dot intensity inference

Dots were automatically detected using previously described algorithms (ltzkovitz et
al., 2012; Lyubimova et al., 2013). Image stacks were filtered with a 3D Laplacian of
Gaussian filter with a standard deviation of 1.5 pixels. Next, a range of thresholds
was tested, for each threshold the filtered image was converted to a binary image
and the number of connected components recorded. We automatically chose the
threshold for which the number of connected component was least sensitive to
threshold selection. Each threshold was manually validated and corrected when
necessary. To extract dot intensity we examined for each dot a subimage centered
on the detected dot centroid, of size 20*20*Z voxels, where Z is the range of z-stacks
spanned by the dot. For this subimage Otsu’s method was applied sequentially in
two thresholding steps. In the first step Otsu’s method was used to infer a threshold,
T, and only voxel values above the threshold were used for the second step. In the
second step Otsu’s method was used again, this time on the refined voxel values, to
extract a threshold T,. The background of the sub-image, estimated as the median of
all original pixel values below T,, was subtracted from each voxel value (negative
pixel values were set to 0). Dot intensity was computed as the integrated intensity of
all background-subtracted voxels in the plane in which the intensity was maximal. In
situations were the maximal cross-section of a dot was smaller than 4 pixels an
expanded 3*3 pixel cross section around the centroid pixel in the maximal intensity

stack was used to estimate dot intensity.

4, Algorithm for inferring f, u and 6

Calculating the fraction of active transcription sites

To infer f, the fraction of active transcription sites (TS), one must unambiguously
identify the TS from nuclear mRNA and compare those to the expected number of
nuclear sites based on the ploidy classification. To this end we searched for each

nuclear intronic dot a nuclear exonic dot that was within 1 um of it and further



removed double-labeled dots with a background dot (a dots appearing in the third
fluorescence channel) within 0.5 um of it. Such rare dots were cytoplasmic elements
that were directly adjacent to the nucleus. To avoid under-counting the number of
TS in a nucleus that only partially appeared in our image stack we only included cells
for which both nuclei were entirely included in the image stack in the calculation of
f (Figure S1F). For each such cell f was computed as the ratio of observed TS to that
expected based on the cell ploidy classification. We performed manual validation of

all detected TS.

Calculation of Pol2 occupancy

To extract u, the rate of mRNA produced from active TS we first calculated for each
TS its Pol2 occupancy, M, based on the ratio of the TS intensity and the intensities of
non-TS dots:

[21M = [Ig/(n - k - median(Ig—nonts))]

Where [x] is the ceiling operator, the lowest integer number larger than x, I is the
intensity of the TS dot appearing in the exonic channel and the median is taken over
non-TS that are in the same optical section as the maximal-intensity section of the

TS. n and k are correction factors described below.

Correction for probe library spread along the gene -

Unlike mature mRNA for which the entire probe library is bound, Pol2 molecules at
distinct positions along the gene are attached to nascent mRNA tails on which a
lower number of probes are bound. If the Pol2 molecule is at the beginning of the
gene a small number of probes would be bound on the nascent mRNA tail, whereas
if it is at the 3’ end of the gene most probes would be bound. To account for this
effect we introduced a correction factor 1 representing the average intensity of TS in
units of cytoplasmic dot intensity. This incorporates the location of the probes along

the target gene:

1

317 = (7755) S ND

Where L is the length of the gene and N (i) is the number of probes that are bound

on a nascent mRNA which is attached to a Pol2 molecule that has reached position i



on the gene. Equation [3] assumes that a polymerase molecule has an equal
probability to reside at each nucleotide position and neglects pausing of the nascent
transcripts at the 3’ end of the gene. Below we describe experimental support for
using this approximation. Figure S3F shows the probe spread correction factors for

the genes studied.

Correction for inferred occupancies - k

Calculating polymerase occupancy as the ratio between TS intensity and the
intensity of single mRNA dots yields estimates that are larger than the real
occupancies, even when correcting for probe locations. This is a result of the ceiling
operator in Equation [2]. To account and correct for this we computed the
occupancies of individual mRNA molecules (non-TS) using n = 1 to obtain a kernel
distribution K(M), the mean of which was k = 1.5 rather than 1. We subsequently

divided by this factor to obtain the estimated polymerase occupancies of all TS.

Calculation of u and &

Polymerase occupancy M was next used to compute u, the average rate of mRNA
produced from active TS:

[Au=M-v/L

Where v is polymerase speed (calibrated below) and L is the length of the gene.
Finally, we used f,u and (X), the average number of mRNA copies per cell to
compute transcript degradation rates as:

[S16 =n-f"u/{X)

Where (X) is the average number of cytoplasmic mRNA molecules per hepatocyte
and n is the ploidy level (typically 4 in our experiments). To compute cytoplasmic
MRNA levels we counted the number of cytoplasmic dots for each segmented cell
within the first 3um of the Z-stack. We next divided this number by the segmented
cytoplasmic volume to obtain the cytoplasmic concentration, and multiplied by the

cytoplasmic volume of the respective ploidy class (Martin et al., 2002).

Calculation of parameters for the intestinal epithelium



In the intestinal epithelium single cell segmentation is challenging as cells are too
dense to avoid overlap. We therefore applied a slightly modified method that still
enables extracting burst fraction, transcription rates and degradation rates in-situ,
but not the precise rates koy, korr (the extraction of which requires precise single-
cell distributions).

To compute burst fraction we detected all TS in each image and divided by the
number of chromosomal copies, in that image, C, calculated as:

[6]C=N-n-6

Where N is the number of nuclei in a single Z section, n is the ploidy and 8 is the the
average number of nuclei in the entire Z-stack (~1.5 for the intestinal images used).
The cell ploidy n was set to n = 2 for villus cells which are postmitotic (for the genes
Pckl, G6pc and Insr) and n = 2.5 for genes that were expressed in the intestinal
crypts (Acly, Actb and Glul). This factor takes into account the fact that crypt cells are
dividing and therefore contain more than two copies on average. In the mouse small
intestinal crypt the kinetic parameters for total cell cycle time, S-phase period, G1
period and G2+M periods are T = 18 hr, Tgy =85 hr, Ts = 7.5 hr, Ty = 2 hr
respectively (Quastler and Sherman, 1959). Using these parameters the average

ploidy for crypt cells is:

[7ln=2-T843.Is 4 4. Tezm 55
Tc Tc Tc

To extract § we segmented ‘meta-cells’ - epithelial regions containing multiple cells,
and divided the summed transcription rates of all TS in each meta-cell by the total
number of mMRNA dots contained in it. u was computed as described above for liver

tissue.

5. Calibrating polymerase speed and validating degradation rate estimates
In this section we describe our calibration of v, the polymerase speed, and two
experiments to validate our estimated degradation rates — an ex-vivo validation on

NIH3T3 cells and an in-vivo validation on liver from fasted and refed mice.

Calibrating polymerase speed



The polymerase speed, v, is used in equation [4] to translate polymerase occupancy
M to transcription rate u. Estimates for average Pol2 speed in mammals vary widely,
ranging from 6 bp/sec (Darzacq et al., 2007) to 60 bp/sec (Singh and Padgett, 2009).
Rather than using this range we independently measured speed using our smFISH
measurements of bursting dynamics combined with Actinomycin-D treatment on
NIH 3T3 cells. We first measured the fraction of active TS, f, and promoter
occupancy, M using equation [2]. We then treated the cells with 3 pg/ml
Actinomycin-D and subsequently fixed the cells at sequential time points. We used
smFISH to count mRNA molecules at each time point (Figure S2) and fit an
exponential decay to obtain the degradation rate §. Using equations [4] and [5] we

obtain:

6] =(S-v/(L-X))=v=L"-6(X/S)

where S = ). M is the total number of Pol2 residing on all TS in the cell, X is the
number of cytoplasmic mRNA molecules and the average ( ) is taken over all cells.
We chose to perform this calibration on P21, a gene with short life-time, since
Actinomycin-D experiments are considered more representative for short-lived
transcripts (Schwanhausser et al., 2011). Using this calibration we obtained a value

of v =34+11bp/s for polymerase speed.

Ex-vivo validation of estimated degradation rates

To validate our estimated degradation rates we next used the inferred speed v to
estimate the degradation rate of Acly, another relatively short life-time gene, using
our in-situ approach (Equations [2-5]). Using v =34+11bp/s our in-situ estimates
yielded 8ip_sity = 0.14 + 0.04hr~1. We next measured the decline in Acly mRNA
levels at different time-points following cessation of transcription with Actinomycin-
D to obtain &,.p = 0.12 + 0.02hr~1. Thus our in-situ estimates are within 15%
error of the degradation rates extracted from Acly mRNA degradation following

Actinomycin-D treatment.

In-vivo validation of estimated degradation rates and protein life-time measurements



In the refeeding experiment (Figure 5) we sought to compare expression in two
metabolic states where a sudden drop in transcription can be observed. Measuring
the decline in mRNA levels under such a scenario would effectively constitute the in-
vivo equivalent to an Actinomycin-D experiment. To this end we used our in-situ
method to measure transcription rates and mRNA concentrations, as well as western
blots to measure protein concentrations of G6pc in 5-hour fasted mice before and
after 1 hour of free refeeding (2 mice for each time point).

For simplicity we assume that both mRNA and protein degradation rates
(8m, 8,) do not change during the relatively short 1-hour refeeding period, that mice
commenced refeeding immediately at the beginning of the hour and that
transcription rates dropped to the refed levels immediately. As explained below
deviations from these assumptions yield error estimates that are even smaller than
those observed. Denoting transcription rates, translation rates, mRNA
concentrations and protein concentrations before and after refeeding by
Bmo» Bpo» X0, Yo and B, Bp1, X1, Y1 respectively, we use the following equations to
describe the mRNA dynamics after commencement of refeeding:

[7]dx/dt = 1 — O " X

Assuming expression is at steady state before refeeding with xy = £,/6,, we
obtain:

(8] x1 /%0 = (Bm1/Bmo) - (1 — e7%mt) + e70m?

Using our measurements of u and f before and after refeeding we can
readily calculate the transcription rate as 5,, = 4 - f - u. Using Equation [8] with our
measured values of B,,1/Bmo = 0.054 £+ 0.03 and x; /x, = 0.32 £ 0.017 (Figure 5A,
B) yields 6,, = 1.27 + 0.15. Our in-situ method estimate of mRNA degradation rates
in the fasted state (before commencement of refeeding) was §,, = 2.08 £+ 0.21.
Thus the degradation rate computed from the drop in mRNA levels over an hour is
40% lower than our in-situ estimates. If refed mice do not commence refeeding
immediately or if transcription rates drop to their refed state more gradually, the
actual degradation rates based on Eqgaution [8] are expected to increase, reducing

this deviation from our in-situ estimates even further.



To obtain bounds on protein degradation rates under these metabolic
conditions we consider two scenarios — in the first one translation stops completely
upon refeeding, and in the second translation proceeds at the same rate as that
during fasting. The equations describing the dynamics of protein concentrations are:
[O] dy/dt = Bp1x — 6, -y
Where we consider either ,; = 0 for the first scenario or ,; = B, for the second
scenario. Solving equation [9] using 8,; = 0 yields:

[10] y1/yo = e~
And for B, = Bpo (Where for simplicity we set B,,,1/Bmo = 0):

Sp &t Sm__-8,t
= mt M P
[11] J’1/y0 5p—6me 6p_6me

We numerically solved Equations [10-11] using the §,, extracted from Equation [8]
and our measurements of y;/y, = 0.43 (Figure 5B, C), yielding 0.85 < §,, < 4.53.
This translates to a short protein life-time of between 10 and 45 min, considerably
less than the typical life-times of 50 hours estimated in whole-genome

measurements (Schwanhausser et al., 2011).

6. Estimating the impact of termination pausing

The estimated Pol2 occupancy M using Equation [2] assumes that all mRNA are
physically attached to Pol2 that are actively transcribing and are uniformly
proceeding along the gene. This estimate neglects potential pausing at the 3’ UTR for
processing. If nascent mRNAs spend a significant time at the 3’ UTR before being
extruded from the TS our calculations of transcription rates would be overestimating
the true ones.

To assess the extent of termination pausing we performed dual-color
experiments with one library consisting of 15 probes targeting the first 2600 bps of
Pckl coupled to alexa594 (L1, Figure S3A) and a second library consisting of 15
probes targeting the last 1000 bps of Pckl coupled to cy5 (L2, Figure S3B). As a
control we used a third library of 15 probes targeting the beginning of the gene and
coupled to cy5 that was interleaved with the alexa594 coupled L1 library (L3, Figure
S3A). If the time of termination pausing is significantly longer than the time taken for

a polymerase molecule to transcribe the gene, most mRNA in the TS will be at the 3’



UTR and should have the entire set of 15 library L1 probes and 15 library L2 probes
and hence equal intensities, compared to the experiment with library L1 and library
L3. If however most nascent mRNAs at the TS are attached to actively transcribing
polymerase molecules only polymerase molecules that have reached the last 1000
bps would have the L2 probes attached to them. A model in which a fraction F of the
mMRNA at the TS are attached to actively transcribing Pol2 molecules and a fraction
(1-F) are pausing at the 3’ end yields the following equations for the TS intensities:
[12] Ii—gs = (M) - F+1- (1= F)] - Ipi—cyto

Where I;;_y are the average intensities of cytoplasmic mRNA dots labeled with
libraries Li (i=1,2,3), and (M) is the average Pol2 occupancy and 7;; are the probe
spread correction factors (Equation [3]) for each library. Using the probe spread

correction factor values in Figure S3F we obtain:

(Ip1-1s) _ [0.76:F+1-(1=F)]'IL1—cyeo
{IL3-TS) [0.14-F+1-:(1-F)]IL3—cyto
(Ip1-1s) _ [0.76:F+1-(1=F)]'IL1—cyeo
(I2-TS) [0-76'F+1'(1_F)]'1L2—cyto

[13] Ry 113 =

[14] Ry =

By dividing [13] and [14] and using the fact that I;;_cyto = I13-¢yto (bOth are cy5
labeled libraries consisting of 15 probes which we validated give rise to dots with

indistinguishable intensities) we obtain:

Rpi1s _ [0.76F+1-(1-F)]
[15] Rpi-rz  [0.14-F+1-(1-F)]

Our measurements of the ratio in equation [15] were 3.02 (Figure S3), yielding
F=0.86. Our experiments thus indicate that >85% of mRNA at TS are attached to
actively transcribing polymerase molecules and thus pausing at the 3’ UTR can be

neglected without substantially influencing our estimates of transcription rates.

7. Fitting mRNA single-cell distributions with promoter models

In this section we describe our approach for fitting 1-state and 2-state promoter
models to our single-cell measurements. We fit both the distributions of mRNA per
cell and the distributions of polymerase occupancies. When fitting promoter
occupancies we assumed the simplest model of polymerase binding and proceeding
at constant rates, neglecting polymerase pausing, as well as transient periods at the

start and end of bursts, in which the loci are gradually filled or depleted with



polymerase molecules. We used the MATLAB function nlinfit to obtain the best fits

and the function nlparci to obtain confidence intervals.

Loci independence

Our measurements indicate that the number of active TS per cell is in general
binomially distributed (Figure S4). Thus different loci in the same cell can be
considered independent. For a hepatocyte of ploidy n, the number of mRNA
molecules per cell is the sum of n independent variables, each obeying a distribution
P;(X) or P,(X), the expected distribution of mRNA molecules per cell from a single
locus for a 1-state or 2-state model respectively. The resulting distributions are the
convolutions of P; (X) or P,(X) with themselves n times. For tetraploid hepatocytes

this yields the distribution: P*(X) = P;(X) * P;(X) = P;(X) * P;(X) where i=1,2.

Correction for volume subsampling

Due to limitations of the imaging setup, and the large volume of hepatocytes we are
only measuring a sub-volume (1/Vj) of the entire hepatocyte volume, where
Vs = 14 £ 3. This limitation is due to the scattering of single mRNAs that are at a
distance of more than 20um from the coverslip, prohibiting counting mRNA in the
entire cellular volume in-situ. In addition we only segment areas around the nuclei,
to ensure exclusion of mRNA appearing in neighboring cells, a phenomenon that is
negligible in the central region of the cells.

To determine the distributions of mRNA per hepatocyte we computed the
mRNA concentration (#mRNA/segmented cytoplasmic volume) and multiplied by the
cytoplasmic volume of a hepatocyte (Martin et al., 2002), as described above. This
calculation yields distributions that are wider than those that would be obtained by
directly counting all mRNA in the entire hepatocyte volume. To understand this
effect, consider a promoter obeying a 1-state model, generating a Poisson
distribution of mMRNA with an average of 1000 copies per cell. The standard deviation
of the number of mRNA per cell is v1000~30. However, if one counts only a 1/10 of
the hepatocyte volume and corrects for the real number by multiplying the counts

by 10, the counts in a 1/10 volume would be Poisson-distributed with an average of



100 £ 10 and the full distribution would be 1000 £ 100 instead of 1000 % 30.
When fitting both the 1-state and 2-state model we controlled for this subsampling
broadening of the distributions as follows. We first generated the full distribution,
P(Y), then numerically sampled 10,000 times from it a number Y;, and produced a
modified count Xi=V*(Poissrnd(Yi/Vy)), where V; = 14 + 3. The resulting numeric

distribution P(X) was used to fit the experimental data.

Correction for polymerase occupancy distributions

In addition to measuring the distributions of mRNA per cell we also measured the
distribution of polymerase molecules on an active TS. As described above this was
computed as the ceiling of the ratio between the intensity of an exonic dot in the TS
to the median intensity of all non-TS exonic dots (Equation [2]). This calculation
yields occupancies that are larger than the real ones due to the ceiling operator. To
translate this to occupancy distributions we computed the occupancies of individual
mRNA molecules (non-TS) using n = 1 to obtain a kernel distribution K(M), the mean
of which was k = 1.5. We convolved the theoretical distributions of Pol2

occupancies with this kernel.

Fitting procedure

For both models we compared the experimental data and the theoretical prediction
for both the cumulative distribution of cellular cytoplasmic mRNA content and that
of the Pol2 occupancies per TS. Since the 2-state model has one free parameter,
whereas the 1-state model is parameter-less we applied a cross-validation scheme to
avoid over-fitting. The data sets for both cellular cytoplasmic mRNA content and TS
Pol2 occupancies were divided into a training set containing 70% of the data points
and a test set containing the remaining 30%. Model parameters were fit on the
training set and mean squared error was computed for the test set. The mean-
squared errors reported in Table S1 and Figure S5C are averages of 100 such cross-

validation runs.

1-state promoter model



The distribution of mRNA generated from a promoter obeying a 1-state model is a
Poisson distribution, and since convolutions of Poisson distributions are also Poisson
distributions:

[16] P{(Y) = e~ XY)Y /Y

Where (Y) is the average number of mRNA per cell. We used this distribution to
generate the convolved and broadened distribution P;f(X). Under a 1-state model
the distribution of Pol2 occupancies is also Poisson:

[171 P(M) = e~ M(M)M /M|

(M) = —log(1 — f), where f is the fraction of double-labeled nuclear dots (TS).
Under this model all promoters are active but due to low polymerase initiation rates

not all loci have active Pol2 molecules occupying them.

2-state promoter model

We used the 2-state model developed by Raj and colleagues (Raj et al., 2006). The
model, described in Figure 2A, considers a promoter that transitions from an OFF
state to an ON state with rate k,y and from an ON state to an OFF state with rate
korr, producing transcripts at rate ¢ when in the ON state. Transcripts are degraded
atarate§.

() rguiop

r(y+ l)F(ROTN+kO%+Y) r(kOTN)

[18] P,(Y) =

@ FCF+ YY)

Where ;F; is a confluent hypergeometric function of the first kind. We used this
distribution to generate the convolved and broadened distribution PJ(X). The
distribution of polymerase occupancies was modeled as a Poisson distribution with
mean (M) determined from our calculations (equation [2]) and convolved with the
Kernel K(M). Figure 3 and Figure S5B demonstrate that a 2-state model fits both the
distributions of cellular mRNA numbers as well as the distributions of polymerase
occupancies. Table S1 provides the estimates of the promoter bursting

rates koy, korr and confidence intervals.

8. Effect of polyploidy on reduction of intrinsic variability
Our measurements indicate that liver promoter bursting is independent. Thus the

probability that a promoter will switch to an ON state is not dependent on the state



of other promoter copies in the same cell (Figure S4). Denoting the steady state
mRNA level that would result from a single promoter by X; (with average E(X;))
the random variable describing the number of mRNA in a diploid/tetraploid
hepatocyte is:

[19] X, = X1 X1

Where n=2 or 4 respectively, with averages E(X,) =nE(X;) and standard
deviation d(X,) = v/no(X,). Since the volumes of hepatocytes scale linearly with
ploidy (Martin et al., 2002) the statistics for the mRNA concentrations C,, = X,,/(nV)
where V is the typical hepatocyte cell volume divided by ploidy, are:

[20] E(Cr) = E(X1)/V

[21] 0(Cy) = o(X,)/VnV

[22] C.V.(Co) = a(Cr)/ E(Cn) = (1/NM)o(X1)/E (X1)

Thus the coefficient of variance of mRNA concentrations reduces as the square root
of the ploidy level. This model predicts a decrease of 30% (v2) in intrinsic variability
in tetraploid hepatocytes (n=4) compared to diploid hepatocytes (n=2). In our
measurements we obtained a highly significant decline of 13% on average for all

genes and conditions compared (Experimental Procedures).
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